
GENERELIZED FUNCTIONS LECTURES

1. Le
ture 1-The spa
e of generalized fun
tions on Rn and

operations on them

1.1. Motivation. One of the basi
 examples for a generalized fun
tion is the

"Dira
 Delta fun
tion". While it is not a fun
tion, δt 
an be des
ribed by δt(x) :=


∞ x = t

0 x 6= t
, and by satisfying the equality

∞́

−∞

δt(x)dx = 1. Noti
e that
∞́

−∞

δt(x)f(x)dx =

f(t)
∞́

−∞

δt(x)dx = f(t). Here are several possible motivations to de�ne generalized

fun
tions:

• Every real fun
tion f : R → R 
an be established as a (ill-de�ned) sum of

ℵ indi
ator fun
tions f ≡
∑
t∈R

ft, where ft(x) :=




1 x = t

0 x 6= t
.

• Sometimes the solution for a di�erential equation (or even just the deriva-

tive of a fun
tion) is not a fun
tion, but only a generalized fun
tion. Using

generalized fun
tions, we 
an formulate solutions in su
h 
ases.

• In physi
s, Dira
 Delta fun
tion 
an des
ribe the density of a point mass.

1.2. Basi
 de�nitions. We denote by C∞c (R) the spa
e of smooth real fun
tions

with 
ompa
t support.

De�nition. A generalized fun
tion is a 
ontinuous linear fun
tional ξ : C∞c (R)→

R. We sometimes use the notation 〈ξ, φ〉 instead of ξ(φ).

To de�ne what does �
ontinuous� means we need to de�ne a topology on C∞c (R).

This is equivalent to de�ne what is a 
onvergent sequen
e in C∞c (R) (why? there

is something that need to be said here about uniform topology), and then ξ is


ontinuous i� the image of a 
onvergent sequen
e 
onverges to the image of its

limit.

De�nition. Given f ∈ C∞c (R) and a sequen
e {fn}n∈N with fn ∈ C
∞
c (R) for all

n, we say that {fn} 
onverges in C
∞
c (R) to f if:

1) There exists a 
ompa
t K ⊂ R for whi
h Supp(f) ∪
⋃
n∈N

Supp(fn) ⊆ K.

1
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2) For every order k = 0, 1, 2..., the derivatives {f
(k)
n } 
onverge uniformly to the

derivative f (k)
.

Re
all a fun
tion f is locally − L1
, denoted f ∈ L1

LOC , if the restri
tion to any


ompa
t subset in its domain is an L1
fun
tion. Given a real fun
tion f ∈ L1

LOC

we'll de�ne ξf : C∞c (R) → R to be the generalized fun
tion ξf (φ) :=
∞́

−∞

f(x) ·

φ(x)dx (noti
e the integral 
onverges as it vanishes outside K, and f |K , φ|K ∈ L
1
).

These are sometimes 
alled regular generalized fun
tions.

Exer
ise. For any f ∈ L1
LOC , ξf is a well de�ned distribution.

The spa
e of generalized real fun
tions is denoted C−∞(R) := C∞c (R))∗. Also, we

have that C(R) ⊂ L1
LOC ⊂ C−∞(R), where the se
ond in
lusion is derived from

the embedding f 7→ ξf .

Exer
ise. Prove that there exists a fun
tion f ∈ C∞c (R) whi
h isn't the zero

fun
tion. Hint: Use fun
tion su
h as e−1/(1−x)
2

as your building blo
k.

De�nition. We say the sequen
e {fn}n∈N 
onverges weakly to f if for every F ∈

C∞c (R) we have: lim
n−→∞

∞́

−∞

F (x) · fn(x)dx =
∞́

−∞

F (x) · f(x)dx . Now we want to

take a 
ompletion with respe
t to this weak 
onvergen
e, and for this we need the

notion of Cau
hy sequen
e: A sequen
e {fn} is 
alled a weakly Cau
hy sequen
e if

∀g ∈ C∞c (R), ǫ > 0 ∃N su
h that ∀m,n > N

∞̂

−∞

(fn(x)− fm(x)) g(x)dx < ǫ.

Exer
ise. There is a natural isomorphism C∞c (R)
w
≃ (C∞c (R))

∗
as ve
tor spa
es.

De�nition. A sequen
e φn ∈ Cc(R) of 
ontinuous, 
ompa
tly supported fun
tions

is said to be an approximation to the identity if the φn are non-negative, have total

mass

∞́

−∞

φn(x) · dx = 1 and for any �xed r, φn is supported on [−r, r] for n

su�
iently large. One 
an generate su
h a sequen
e by starting with a single non-

negative 
ontinuous 
ompa
tly supported fun
tion φ1 of total mass 1, and then

setting φn(x) = nφ1(nx). Many other 
onstru
tions are possible also.

Noti
e that given η ∈ C−∞(R) of the form η = ξf , we 
an �re
over� f 
ompletely

by applying 〈ξf , φn(x+ t)〉, and take the limit to get f(t).
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1.3. Derivatives of generalized fun
tions. Let f ∈ C∞c (R). We de�ned ξf (φ) :=
∞́

−∞

f(x) · φ(x)dx, and thus ξf ′(φ) =
∞́

−∞

f ′(x) · φ(x)dx. Using integration by parts

we'll get ξf ′(φ) = f(x) · φ(x)|∞−∞ −
∞́

−∞

f(x) · φ′(x)dx. However, sin
e φ and f

has 
ompa
t support, we know that f(x) · φ(x)|∞−∞ = 0. Thus, we'll de�ne

ξ′(φ) := −ξ(φ′).

For example, the derivative of δ0 
an be (badly) des
ribed as

δ′0(x) :=





∞ x→ 0−

−∞ x→ 0+

0 otherwise

.

This is a bad des
ription, sin
e we 
an't evaluate generalized fun
tions at spe
i�


points (also it's hard to des
ribe δ′′0 , δ
′′′
0 this way). When δ′0(x) is applied to some

φ ∈ C∞c (R), a

ording to our de�nition we'll get δ′0(φ) = −δ0(φ
′) = −φ′(0).

Exer
ise. Find a fun
tion F ∈ L1
LOC for whi
h F ′ = δ. Hint: F (x) :=




0 x < 0

1 x ≥ 0
.

1.4. The support of generalized fun
tions. We 
annot evaluate a generalized

fun
tion at a point. Therefore, we 
annot just de�ne its support by Supp(ξ) :=

{x ∈ R | ξ(x) 6= 0}. However, if for some neighborhood U ⊂ R we have ∀f ∈

C∞c (U), ξ(f) = 0, then evidently supp(ξ) ⊆ U c. In this 
ase we'll denote ξ|U ≡ 0.

Notation: C∞c (U) is the spa
e of smooth fun
tions f : U → R supported in some


ompa
t subset of U . Given a 
ompa
t subset K of some spa
e X , we denote

C∞K (X) the spa
e of smooth fun
tions f : X → R with supp(f) ⊆ K. In parti
ular

C∞K (X) ⊆ C∞c (X) for every K ⊆ X .

As another example for a generalized fun
tion's support: it's reasonable to expe
t

Supp(δt) = {t}. So, we'd like to de�ne Supp(ξ) to be the 
omplement of the union

over all neighborhoods U ⊂ R su
h that ∀f ∈ C∞c (U), ξ(f) = 0. This de�nition is

well de�ned only if we solve the following exer
ise:

Exer
ise. Let U1, U2 be open subsets of R. Show that:

1) if ξ|U1
≡ ξ|U2

≡ 0 then ξ|U1∪U2
≡ 0. Hint: Use partition of unity.

2) Show this also holds for any union of su
h 
ompa
t {Ui}i∈I .
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Note that the support of δ′0 is just {0} and yet, given some f ∈ C(R) for whi
h

f(0) = 0, f ′(0) 6= 0, we'll have δ′0(f) = −δ0(f
′) = −f ′(0) 6= 0. In other words,

having f(0) = 0 isn't enough to get δ′0 to vanish on f . We need f to vanish with

all its derivatives.

Exer
ise. 1) The support of δ(n) is {0} for any n.

2) Find all the generalized fun
tions ξ ∈ C−∞c (R) for whi
h Supp(ξ) = {0}. Hint:

All the fun
tions δ
(n)
0 for n ∈ N and their (�nite) linear 
ombinations.

3) Supp(aξ1 + bξ2) ⊆ Supp(ξ1) ∪ Supp(ξ2).

4) Supp(ξ)− Supp(ξ)◦ ⊆ Supp(ξ′) ⊆ Supp(ξ).

1.5. Produ
ts and 
onvolutions of generalized fun
tions.

De�nition. Let f ∈ C∞c (R), ξ ∈ C−∞c (R). We'd like to have (f · ξ)(φ) =
∞́

−∞

ξ(x) ·

f(x) · φ(x)dx. Thus, we'll de�ne (f · ξ)(φ) := ξ(f · φ).

A
tually, even though we 
an multiply every su
h f and ξ, the produ
t of two gen-

eralized fun
tions will not always be de�ned. Noti
e that indeed in some topologies

the produ
t of two Cau
hy sequen
es isn't always a Cau
hy sequen
e.

Re
all that given two fun
tions f, g, their 
onvolution is the fun
tion (f ∗ g)(x) :=
∞́

−∞

f(t)·g(x−t)dt. The 
onvolution of two smooth fun
tions will always be smooth.

In addition, if f, g have 
ompa
t support, than so will f ∗ g .

Exer
ise. Supp(f ∗ g) is the Minkowski sum of Suppf and Suppg. Therefore

f, g ∈ C∞c (R) implies f ∗ g ∈ C∞c (R).

Given f, g ∈ C∞c (R) we 
an write (f ∗ g)(x) = ξf (g̃x), where g̃x(t) := g(x− t). This

gives the motivation to de�ne the 
onvolution ξ ∗ g to be the fun
tion (ξ ∗ g)(x) =

ξ(g̃x) (noti
e: the 
onvolution between a fun
tion and a generalized fun
tion is a

fun
tion- not a generalized fun
tion).

Exer
ise. Show that for φ ∈ C∞c (R) we get that ξ ∗ φ is a smooth fun
tion.

Next is the de�nition for 
onvolution of two generalized fun
tions. We won't de�ne

it for every 
ouple of generalized fun
tions -only for those with 
ompa
t support,
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or more pre
isely, when at least one of the generalized fun
tions have 
ompa
t

support. For ξf , ξg ∈ C
−∞
c (R) we'd like to have:

(ξf ∗ ξg)(φ) =

∞̂

x=−∞

(f ∗ g)(x) · φ(x)dx =

∞̂

x=−∞

∞̂

t=−∞

f(t) · g(x− t) · φ(x)dtdx

Rearranging the expression and repla
ing the order of integration gives:

(ξf ∗ ξg)(φ) =

∞̂

t=−∞

f(t)

∞̂

x=−∞

g(x− t) · φ(x)dxdt

In a "usual" 
onvolution, the arguments of the multiplied fun
tions in the integral

sum up to the 
onvolution's argument (e.g., (f ∗ g)(x) :=
∞́

−∞

f(t) · g(x− t)dt, and

x = t+ (x− t)). In our 
ase, we denote φ̄(x) := φ(−x), and write:

∞̂

t=−∞

f(t)

∞̂

x=−∞

g(x− t) · φ̄(−x)dxdt =

∞̂

t=−∞

f(t) · (ξg ∗ φ̄)(−t)dt = ξf (ξg ∗ φ̄)

De�nition. We de�ne(ξf ∗ ξg)(φ) := ξf ((ξg ∗ φ̄)).

However, some formal justi�
ation is required. Given a 
ompa
t K ⊂ R, we'll say

ρ is a 
uto� fun
tion of K if ρ|K ≡ 1, ρ|V ≡ 0, when V ⊂ R\K.

Exer
ise. Let K,V as above. Show that there always exists a smooth 
uto�

fun
tion. Hint: use Urison's Lemma.

Thus, given some ξ ∈ C−∞c (R) with Supp(ξ) ⊂ K we will have ξ(φ) = ξ(ρK · φ).

This enables us to de�ne ξ as a fun
tional over all C∞(R) and not only on C∞c (R)).

For every φ ∈ C∞(R) we de�ne ξ(φ) = ξ(ρK · φ) with K := supp(ξ) ⊂ R.

Exer
ise. 1) Show that (ξ ∗ η)′ = ξ′ ∗ η = ξ ∗ η′. Hint: First show that δ ∗ η = η,

and that δ′ ∗ η = η′. Then show we have asso
iativity: δ′ ∗ (ξ ∗ η) = (δ′ ∗ ξ) ∗ η.

2) In an exer
ise above we showed: if φ ∈ C∞c (R) then the 
onvolution ξ ∗ φ is

smooth. Show that if φ is smooth, and Supp(ξ) is 
ompa
t, then ξ ∗ φ will still be

smooth.

1.6. Generalized fun
tions and di�erential operators. A di�erential equa-

tion 
an be des
ribed by the equality ”Af = g”, where A is a di�erential operator.

Let's try to solve su
h an equation, when we assume A is a linear di�erential op-

erator, and is invariant under translations (i.e., we'll have Af̄ = Af , where φ̄ is

any �xed translation of φ). An example for su
h operator is a di�erential operators

with �xed 
oe�
ients (e.g., Af := f ′′ + 5f ′ + 6f).
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A simple 
ase is �nding G for whi
h the equation AG = δ0 holds. Given su
h G, and

usingA's invarian
e under translations, we get that AGx = δx, forGx(t) := G(t−x).

We 
an use the exer
ise above to show that A(f ∗h) = (Af)∗h for any two fun
tions

f, h and then dedu
e thatA(G ∗ g) = AG ∗ g = δ0 ∗ g = g. Hen
e, we 
an �nd a

general solution f for Af = g by solving only one simpler 
ase AG = δ0. The

solution G is 
alled Green's fun
tion of the operator.

Exer
ise. 1) Let A be a di�erential operator with �xed 
oe�
ients. Choose any

solution for the equation AG = δ0, and des
ribe the 
onditions G have to meet

without using generalized fun
tions.

2) Without using generalized fun
tions, please explain the equation A(G ∗ g) = g

we got for the solution G.

3) Solve the equation ∆f = δ0 (where ∆ is the Lapla
ian operator).

1.7. Regularization of generalized fun
tions.

De�nition. Let {ξλ}λ∈C be a family of generalized fun
tions. We say the family

is analyti
 if 〈ξλ, f〉 is analyti
 (as fun
tion of λ ∈ R) for every f ∈ C∞c (R).

Example. We denote xλ+ :=




xλ x > 0

0 x ≤ 0
, and de�ne the family by ξλ := xλ+. The

behavior of the fun
tion 
hanges as λ 
hanges: When Re(λ) > 0 we'll have a ni
e


ontinuous fun
tion; If Re(λ) = 0 We'll get a step fun
tion and for Re(λ) ∈ (−1, 0),

xλ+ will not be bounded. We'd like to extend the de�nition analyti
ally for Re(λ) <

−1.

A derivation of xλ+ (both as a 
omplex fun
tion or as de�ned for a generalized

fun
tion) gives ξ′λ = λ · ξλ−1. This is a fun
tional equation, that enables us to

de�ne ξλ−1 :=
ξ′λ
λ , and thus extend ξλ to every λ ∈ C. This extension isn't

analyti
, but is meromorphi
: it has a pole in λ = 0, and by the extension formula,

in λ = −1,−2, ....

This is an example for a meromorphi
 family of generalized fun
tions. Let's give a

formal de�nition. Our {ξλ}λ∈C has a set of poles {λn} (poles are always dis
rete),

whose respe
tive orders are denoted {dn}. The family will be 
alled meromorphi


if every pole λi has a neighborhood Ui, su
h that 〈ξλ, f〉 is analyti
 for every

f ∈ C∞c (R) and λi 6= λ ∈ Ui.

Exer
ise. For the above example ξλ := xλ+, �nd the order and the leading 
oe�-


ient for every pole.
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Example. For a given p ∈ C[x1, ...xn], we denote similarly p+(x1, ...xn)
λ :=



p(x1, ...xn)

λ x > 0

0 x ≤ 0
. The problem of �nding the meromorphi
 
ontinuation for

a general polynomial was open for a while. It was solved by Bernstein by de�ning

a di�erential operator Dpλ+ := b(λ) · pλ−1+ , where b(λ) was a polynomial pointing

on the lo
ation of the poles.

Exer
ise. 1) Solve the problem of �nding an analyti
 
ontinuation for p+(x1, ...xn)
λ

in the 
ase p(x, y, z) := x2 + y2 + z2 − a.

2) Solve the problem of �nding an analyti
 
ontinuation for p+(x1, ...xn)
λ
in the


ase p(x, y, z) := x2 + y2 − z2.
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2. Le
ture 2- topologi
al properties of C∞c (Rn)

We want to analyze the spa
e of distributions C−∞(Rn) and to de�ne a topology

on it. For this we use fa
ts from topologi
al ve
tor spa
es.

2.1. Topologi
al ve
tor spa
es.

De�nition. A topologi
al ve
tor spa
e (or linear topologi
al spa
e) is a linear spa
e

with a topology, s.t. multipli
ation by s
alar and ve
tors addition is 
ontinuous.

More pre
isely: there exists 
ontinuous operations:

1) + : V × V −→ V

2) · : F × V −→ V , where F is some topologi
al �eld su
h that V is a ve
tor spa
e

over it.

This demand limits the topology we 
an have. For example, giving the spa
e

dis
rete topology will for
e a dis
rete topology on the �eld.

Sin
e addition of points is 
ontinuous, translation is also 
ontinuous. This makes

all the points in the spa
e "similar" and therefore the open sets of every point x

are the same as those around 0. This property is 
alled homogeneity. We're mainly

interested in "ni
e" topologi
al ve
tor spa
es. Spe
i�
ally: We assume all the

topologi
al ve
tor spa
es are Hausdor�. Note that for a non Hausdor� spa
e

V we 
an quotient by the 
losure of {0} and get a Hausdor� spa
e. This will make

sense by the following exer
ise.

De�nition. Let V be a topologi
al ve
tor spa
e over F .

1) We say that a set A ⊆ V is convex if for every a, b ∈ A the linear 
ombination

ta+ (1− t)b ∈ A where t ∈ [0, 1].

2) We say that V is lo
ally 
onvex if it has a basis of its topology whi
h 
onsists of


onvex sets.

3) For every open 
onvex set 0 ∈ C in V we set for any x ∈ V : NC(x) = inf{α ∈

R≥0 : xα ∈ C}.

4) We say that a set W ⊆ V is balanced if λλW ⊆W for all |λ| ≤ 1 where λ ∈ F .

Note that a 
onvex set C is balan
ed i� it is symmetri
 (C = −C).
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Exer
ise. 1) Find a topologi
al ve
tor spa
e whi
h is not lo
ally 
onvex (not

ne
essarily of �nite dimension.

2) Show that any �nite dimensional Hausdor� lo
ally 
onvex spa
e is isomorphi


to Fn. This is also true for linear topologi
al spa
es that are not lo
ally 
onvex,

but the proof is harder.

3) Let V be a lo
ally 
onvex linear topologi
al spa
e. Prove that V is Hausdor� i�

{0} is a 
losed set.

Remark. From the homogeneity of V , {0} is a 
losed set i� ∀x ∈ V {x} is a 
losed set.

The exer
ise shows a lo
ally 
onvex linear topologi
al spa
e satis�es the separation

axiom T1 i� it satis�es T2.

Exer
ise. Let 0 ∈ C be an open 
onvex set in a topologi
al ve
tor spa
e V .

1) Show that NC(x) <∞ for allx ∈ V .

2) Show that if furthermore C is balan
ed then NC(x) is a semi-norm.

In a lo
ally 
onvex spa
e we have a basis to the topology 
onsisting of 
onvex sets.

We 
an assume all the sets are symmetri
: First noti
e it's enough to show this for

open sets around 0 (from homogeneity of the spa
e). Then, given any open 
onvex

neighborhood A of 0, we know A ∩ −A is a (non-empty) symmetri
 
onvex open

subset of it. Therefore we have a basis for our topology 
onsisting of symmetri



onvex sets.

However, there is a bije
tion between semi-norms on the spa
e and symmetri



onvex sets. Given a semi-norm N on V , the bije
tion maps N to its unit ball

{x ∈ V |N(x) ≤ 1} (it's symmetri
 by absolute homogeneity and 
onvex by the

triangle inequality). Note he semi-normNC(x) we de�ned isn't a norm. Spe
i�
ally,

if C 
ontains the subspa
e span{v}, we'll get nC(v) = 0 (even though v 6= 0).

However, given the basis T for our topology, we 
an not get nC(v) = 0 for all

the sets C ∈ T . Sin
e in this 
ase we'd have span{v} ⊆
⋂
C∈T

C, 
ontradi
ting the

Hausdor� assumption.

De�nition. A set C ⊆ V is absorbent ∀x ∈ V ∃λ : x
λ ∈ C. i.e., multiplying C

by a big enough s
alar 
an rea
h every point in the spa
e. For absorbent C ⊆ V

we'll have NC(v) < ∞ for all v ∈ V dire
tly from de�nition. Every open set is

absorbent, and thus we 
an de�ne our norm for all the sets in the basis.

Example. The segment {(x, 0) |x ∈ [0, 1]} in R2
isn't absorbent, and for y = (1, 0)

we get nC(y) =∞.
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Exer
ise. 1) Find a lo
ally 
onvex topologi
al ve
tor spa
e V su
h that V has no


ontinuous norm on it. That is, every 
onvex open set C 
ontains a line span{v},

so NC(v) = 0.

2) Find a non lo
ally 
onvex spa
e.

In 
on
lusion, a lo
ally 
onvex spa
e possess a basis to the topology 
onsists of 
ol-

le
tion of sets that de�nes a system of semi-norms. Some authors use this statement

as the de�nition of lo
ally 
onvex spa
e.

2.2. De�ning 
ompleteness. In a metri
 spa
e, a point belongs to the 
losure

of a given set if and only if it is the limit of some sequen
e of points belonging to

that set. The 
onvergen
e of the sequen
e (an)n∈N to the point x is de�ned by the

requirement that for any ǫ > 0 there is N ∈ N su
h that d(an, x) < ǫ whenever

n ≥ N . This is equivalent to the requirement that for any neighborhood U of x

there is some N ∈ N su
h that an belongs to U whenevern ≥ N .

For a general topologi
al ve
tor spa
e V , even though we don't have a metri
 on

V , we 
an de�ne Cau
hy series:

De�nition. A series {xn} ⊂ V is 
alled a Cau
hy series, if for every neighborhood

U of 0 ∈ V there is an index n0 ∈ N su
h that m,n > n0 implies xn − xm ∈ U .

Remark. More generally, if X has a uniform topology, then we 
an de�ne a notion

of a Cau
hy sequen
e. We will not give the de�nition of a uniform topology, but we

mark that any topologi
al group possess a uniform topology, and indeed one 
an

de�ne a notion of a left (resp. right) Cau
hy sequen
e as follows: {xn} is a Cau
hy

sequen
e if for every neighborhood U of e ∈ G there is an index n0 ∈ N su
h that

m,n > n0 implies x−1m xn ∈ U (resp. xnx
−1
m ∈ U).

De�nition. 1) A topologi
al ve
tor spa
e is 
alled sequentially 
omplete if every

Cau
hy sequen
e in it 
onverges.

2) A subset Y ⊆ X is 
alled sequen
ialy 
losed if every Cau
hy sequen
e {yn} ∈ Y


onverges to a point y ∈ Y .

The next example shows that we 
an have 
losed sets Y that are sequentially 
losed

but not 
losed. This example also shows that if the topology is too strong ( not

�rst 
ountable) then the notion of Cau
hy sequen
e is not the �right notion�.



GENERELIZED FUNCTIONS LECTURES 11

Example. Let X be the real interval [0, 1] and let τ be the 
o-
ountable topology

on X ; that is, τ 
onsists of X and

/O together with all those subsets U of X whose


omplement UC is a 
ountable set. Let A = [0, 1), and 
onsider A. Now, {1} /∈ τ

be
ause Xr {1} = [0, 1) is not 
ountable. It follows that A is not 
losed. However,

A is 
losed and 
ontains A so A = [0, 1]. Sin
e 1 is not an element of A, it must be

a limit point of A. Suppose that (an)n∈N is any sequen
e in A. Let B = {a1, a2, ...}

and let U = BC . Then 1 ∈ U and sin
e B is 
ountable, it follows that U is an

open neighborhood of 1 whi
h 
ontains no member of the sequen
e (an)n∈N . It

follows that no sequen
e in A 
an 
onverge to the limit point 1. This argument 
an

be applied to show that A has no Cau
hy sequen
es, so it is (trivially) sequentially


losed but not 
losed.

De�nition. 1) An embedding i : V →֒ W is 
alled a stri
t embedding if i : V →֒

i(V ) is an isomorphism of topologi
al ve
tor spa
es.

2) A spa
e V is 
alled 
omplete if for every stri
t embedding φ : V →W , the image

φ(V ) is 
losed.

Remark. * Equivalently, we 
an de�ne that a spa
e V is 
omplete if any Cau
hy

net is 
onvergent. By this de�nition it 
an be easily seen that any 
ompete spa
e

X is also sequentially 
omplete.

* In the 
ategory of �rst 
ountable topologi
al ve
tor spa
es, 
ompleteness is equiva-

lent to sequentially 
ompleteness, and indeed the notion of Cau
hy nets is equivalent

to Cau
hy sequen
e, and a set Y ⊆ X is 
losed i� it is sequentially 
losed.

Exer
ise. Find a sequentially 
omplete spa
e whi
h is not 
omplete. Hint: See

example.

De�nition. 1) A spa
e V̄ will be 
alled a 
ompletion of V if V̄ is 
omplete and

there is a stri
t embedding i : V → V̄ , where i(V ) is dense in V̄ .

2) A di�erent de�nition 
an be made using a universal property: A (stri
t?)

embedding i : V → V̄ is a 
ompletion of V if:

(a) V̄ is 
omplete.

(b) For every map ψ : V → W where W is 
omplete, there is a unique map

φW : V̄ →W , su
h that ψ ≡ φW ◦ i.�

Exer
ise. (*) Show that these two de�nitions of 
ompleteness are equivalent.
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This de�nition of 
ompletion, using the desired property saves us dealing with

Cau
hy nets or �lters. However, one has to use them to show that su
h 
ompletion

exists:

Exer
ise. 1) (*) Show that every linear topologi
al Hausdor� spa
e has a 
omple-

tion.

2) Show that in the 
ategory of �rst 
ountable topologi
al ve
tor spa
es def1⇐⇒

def2⇐⇒ seq.comp.

2.3. Fré
het spa
es. Reminder: A Bana
h spa
e is a normed spa
e, whi
h is


omplete with respe
t to its norm. A Hilbert spa
e is a inner produ
t spa
e, whi
h

is 
omplete with respe
t to its inner produ
t.

Theorem. (Hahn-Bana
h) Let V be a normed TVS, W ⊆ V a linear subspa
e and

f : W −→ R a 
ontinuous fun
tional su
h that |f(x)| < C · ‖x‖, then there exists

f̃ : V −→ R su
h that f̃ |W = f and

∣∣∣f̃(x)
∣∣∣ < C · ‖x‖.

Exer
ise. Let W ⊆ V be lo
ally 
onvex topologi
al ve
tor spa
es, and set V ∨ and

W∨ to be the 
ontinuous duals of V and W respe
tively, and let (∗) denote the

usual dual.

(a) Show that the restri
tion map V ∗ −→W ∗ is onto.

(b) Show that the restri
tion map V ∨ −→W∨ is onto.

Every normed spa
e is (Hausdor� and) lo
ally 
onvex, sin
e the open balls in the

spa
e are 
onvex, and they give a basis for the topology. We also know that every

normed spa
e is metri
. However, metrizability doesn't for
e lo
al 
onvexity and

vi
e versa.

De�nition: A Fré
het spa
e is a lo
ally 
onvex 
omplete metrizable spa
e.

Exer
ise. 1) Show that for a lo
ally 
onvex topologi
al ve
tor spa
e V the following

three 
onditions are equivalent, thus ea
h implying that V is a Fré
het spa
e.

(a) V is metrizable.

(b) V is �rst 
ountable.

(
) There is a 
ountable 
olle
tion of semi-norms {ni}i∈N that de�nes the basis for

the topology over V , i.e, Ui,ǫ = {x ∈ V |ni(x) < ǫ} is a basis for the topology.

2) Let V be a lo
ally 
onvex metrizable spa
e. Prove V is 
omplete (and it's a

Fré
het spa
e) i� it's sequentially 
omplete.
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Re
all that a 
ompletion of a spa
e using a norm is the quotient spa
e of Cau
hy

sequen
es under the equivalen
e relation {xn} ∼ {yn} ⇐⇒ lim
n→∞

‖xn − yn‖ = 0.

A 
ompletion of a spa
e using a norm results in a Bana
h spa
e. A 
ompletion of

V using some semi-norm n will eliminate all the elements {x ∈ V |n(x) = 0}, and

will de�ne a norm on the quotient, again resulting in a Bana
h spa
e. For example,

the 
ompletion of the spa
e of step fun
tions on R, with respe
t to the semi-norm

‖f‖1 :=
´

R
|f(x)|dx gives the Bana
h spa
e L1(R).

Let V be a Fré
het spa
e. In this 
ase we have a sequen
e of semi-norms, ni on V .

We 
an order them by repla
ing ni with max
j≤i
{nj}. Denote Vi the 
ompletion of V

with respe
t to ni. If two norms ni, nj satisfy ∀x ∈ V, ni(x) ≥ nj(x), we get an

in
lusion (that is 
ontinuous) Vi →֒ Vj . A sequen
e of as
ending norms n1 ≤ n2 ≤ ...

will thus give rise to a des
ending 
hain of 
ompletions V1 ←֓ V2 ←֓ V3.... Our

spa
e V will be de�ned as the inverse limit V = lim
←−

Vi whi
h in this 
ase has a

very ni
e des
ription: it is the interse
tion V =
⋂
i∈N

Vi of these Bana
h spa
es (with

the subspa
e topology?). If ni, nj are semi-norms we only get a 
ontinuous map

Vi →֒ Vj(every 
onverging sequen
e is mapped to a 
onverging sequen
e). In this


ase V will be the inverse limit lim
←−

Vi where the topology on V is generated by all

the sets of the form ϕ−1i (Ui) where Ui is an open set in Vi and ϕi : V = lim
←−

Vi −→ Vi

is the natural map (it is part of the data of lim
←−

Vi).

Example. 1) Let V := C∞(S1) is a Fré
het spa
e. De�ne the norms {ni}i∈N by

‖f‖ni
:= max

j≤i
sup
x∈S1

{
∣∣f (j)(x)

∣∣}. The 
ompletion with respe
t to nk will be Vk =

Ck(S1). This family satisfy ∀x ∈ V, ni(x) ≥ nj(x) so by the argument above we

indeed have C∞(S1) =
⋂
k∈N

Ck(S1).

2) V = C∞(R) is a Fré
het spa
e. De�ne nKi,n by ‖f‖ni
:= max

j≤i
sup
x∈Ki

{
∣∣f (j)(x)

∣∣}

where Ki = [−i, i]. Noti
e that this gives an as
ending 
hain of seminorms so this

de�nes a Fré
het spa
e V = lim
←−

Vi. A similar argument 
an show C∞(Rn) is a

Fré
het spa
e, and a
tually also C∞(M) for a manifold M . In these 
ases we'll

take the supremum over all the possible derivatives.

De�nition. The dire
t limit of an as
ending sequen
e of ve
tor spa
es is the spa
e

V∞ :=
⋃
n∈N

Vn. This is not a Fré
het spa
e, but a lo
ally 
onvex topologi
al ve
tor

spa
e. A 
onvex subset U ⊆ V∞ will be open i� U
⋂
Vn is open in Vn, for all n.

Every spa
e C∞(K) has the indu
ed topology from C∞(R). Taking the union of

the as
ending 
hain C∞([−1, 1]) ⊂ C∞([−2, 2]) ⊂ ... will give all smooth fun
tions

with 
ompa
t support C∞c (R) = lim
n
C∞([−n, n]) as a dire
t limit. However, this is
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not a Fré
het spa
e (it's a dire
t limit and not an inverse limit). A basi
 open set

will be

U(ǫn,kn) :=
∑

n∈N

{f ∈ C∞(R) |Supp(f) ⊆ [−n, n], f (kn) < ǫn}

, where the Σ denotes the Minkowski sum, that is A+B := {a+ b|a ∈ A, b ∈ B}.

Exer
ise. Show that fn ∈ C∞c (R) 
onverge to f with respe
t to the topology

de�ned above if and only if it 
onverges as was de�ned in the �rst le
ture, i.e,

(a) There is a 
ompa
t set K ⊆ R s.t. supp(f) ∪ supp(fn) ⊆ K.

(b) For every k ∈ N the derivatives f
(k)
n (x) 
onverge uniformly to f (k)(x).

Remark. Noti
e that the topology on C∞c (R) is 
ompli
ated- it is a dire
t limit of

an inverse limit of Bana
h spa
es!

Exer
ise. Show that taking a 
onvex hull instead of a Minkowski sum (i.e., de�ning

U(ǫn,kn) := convn∈N{f ∈ C
∞(R) |Supp(f) ⊆ [−n, n], f (kn) < ǫn}) will result in the

same topology. This shows that C∞c (R) is a lo
ally 
onvex TVS (although by the

de�nition as a dire
t limit of Fré
het spa
es it is 
learly a LCTVS).

Finally, Fré
het spa
es have several more ni
e properties:

• Every surje
tive map φ : V1 → V2 between Fré
het spa
es is an open map

(it's a
tually enough that V2 is a Fré
het spa
e and V1 is 
omplete).

• De�ning K := kerφ, it 
an be shown that the quotient V1/K is a Fré
het

spa
e, and fa
tor φ to the 
omposition V1 → V1/K → V2. The map

V1/K → V2 will be an isomorphism.

• In addition, every 
losed map φ : V1 → V2 between Fré
het spa
es 
an be

similarly de
omposed. First by showing Im(φ) is a Fré
het spa
e, and then

de
omposing V1 → Im(φ)→ V2.

2.4. Sequen
e spa
es. As an example for Fré
het spa
es we'll analyze sequen
e

spa
es. Reminder: lp is the spa
e of all sequen
es {xn}n∈N over R, su
h that

∞∑
n=1
|xn|

p <∞. It is a Bana
h spa
e. For p = 2, it is also a Hilbert spa
e.

Let SW (N) be the spa
e of all the sequen
es whi
h de
ays to zero faster than any

polynomial, i.e., ∀n ∈ N, lim
i−→∞

xi · i
n = 0. One norm over su
h sequen
es 
an be

||{xi}||n = sup
i∈N
{|xi · i

n|} = ||xi · i
n||l∞ . In that norm we 
an easily see that every

Cau
hy sequen
e 
onverges. De�ne the topology on SW (N) by the family of norms

||{xi}||n and this de�nes a Fré
het spa
e. Thus, this is an example for a Fré
het

spa
e whi
h is not a Bana
h spa
e.
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QUESTION: How 
an we see every Cau
hy sequen
e 
onverges? Why isn't it a

Bana
h spa
e?

The dual spa
e V ∗ will be
{
{xi}i∈N | ∃n, c : xi < c · in

}
. This is a union of Bana
h

spa
es, as opposed to the interse
tion we had when de�ning the 
ompletion of a

Fré
het spa
e (we'll talk about the dual spa
e more next le
ture). Note that both

V and V ∗ 
ontain the subspa
e of all sequen
es with 
ompa
t support - only �nite

number of non-zero elements.

QUESTION: Why is V ∗ the dual of V ?

A
tually, every separable spa
e 
an be established as a sequen
e spa
e. The el-

ements of the spa
e will 
orrespond to in�nite sequen
es. The elements in the


ountable dense subset of the spa
e will 
orrespond to the sequen
es with 
ompa
t

support.

Smooth fun
tions on the unit 
ir
le, C∞(S1), 
orrespond to sequen
es {xi}i∈N

de
aying faster than all polynomials. More pre
isely, we 
an view f ∈ C∞(S1) as

a periodi
 fun
tion in C∞periodic(R) whi
h 
an be written as f(x) =
∑
an · e

int
. So

we atta
h f 7−→ an and an de
ays faster then any polynomial.

Exer
ise. 1) Show that the Fourier transform F : C∞(S1) −→ SW (Z) by f 7−→

an is an isomorphism of Fré
het spa
es, that is, show that for any seminorm Pi

of SW (Z), there exists seminorm Sj of C∞(S1) and C ∈ R su
h that for any

f ∈ C∞(S1), ‖F(f)‖Pi
< C · ‖f‖Sj

.

2) De�ne a Fré
het topology on S(R) = {f ∈ C∞(R)| lim
x→±∞

f (n)(x) · xk −→ 0∀k}.
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3. Le
ture 3- C−∞(Rn)- topology and filtrations.

3.1. Topologies of the spa
e of distributions.

Remark. Let U ⊆ Rn be an open set. Then we 
an de�neC−∞(U) := (C∞c (U))∗.

De�nition. 1) Let V be topologi
al ve
tor spa
e. A subset B ⊆ V is 
alled bounded

if for every open U ⊆ V exists λ su
h that B ⊆ λ · U . When the topology on V

is given by a sequen
e of norms, B will bounded i� it is bounded with respe
t to

every one of the norms.

2) Denote V ∗ = {f : V → R : f is linear and 
ontinuous}. There are many topolo-

gies we 
an de�ne on V ∗, but we will 
onsider only two topologies. V ∗ with the

weak topology will be denoted V ∗W , and with and strong one V ∗S . Given ǫ > 0 and

S ⊆ V denote Uǫ,S = {f ∈ V ∗ : ∀x ∈ S, f(x) < ǫ}. The topology on V ∗w is indu
ed

by the basis:

B := {Uǫ,S : ǫ > 0, |S| <∞} ,

while the topology on V ∗S is indu
ed by the basis:

B := {Uǫ,S : ǫ > 0, S is bounded} .

In parti
ular, every open set in V ∗W is open in V ∗S .

By de�nition, a sequen
e {fn} ⊆ V
∗

onverges to f ∈ V ∗ i� for every Uǫ,S ∈ B there

exists N ∈ N s.t. (fn − f) ∈ Uǫ,S for n > N . That is, ∀x ∈ S, fn(x) − f(x) < ǫ.

Therefore {fn} 
onverges to f under the weak topology i� it 
onverges point-wise,

and it 
onverges under the strong topology i� it 
onverges uniformly on every

bounded set.

Example: Let V = R. Let ψ be a bump fun
tion. Noti
e that gn(x) = ψ(x) + n


onverges pointwise to 0 (and hen
e also weakly). gn doesn't 
onverges uniformly

to 0, but it does 
onverges uniformly on bounded sets to 0 so it strongly 
onverges

to 0.

Assume V is a Fré
het spa
e. Re
all that we 
an de�neV as a inverse limit of

Bana
h spa
es V =
⋂
i∈N

Vi where Vi is the 
ompletion of V with respe
t to an

in
reasing sequen
e of semi-norms ni. If we dualize the sequen
e {Vi} we get an

in
reasing sequen
e V ∗1 ⊆ V ∗2 ⊆ ... ⊆ V ∗S = lim
−→

V ∗i , and we get that V ∗S is a dire
t

limit of Bana
h spa
es (as a topologi
al ve
tor spa
e).

Exer
ise. Consider the embedding C∞c (R) →֒ C−∞(R), de�ned by f 7→ ξf . Show

that:
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1) This embedding is dense with respe
t to the weak topology on C−∞(R).

2) This embedding is dense with respe
t to the strong topology on C−∞(R).

3) C−∞(R)w is not 
omplete but it is sequentially 
omplete.

4) C−∞(R)w = C∞c (R)#- the dual spa
e (as a linear spa
e).

5) C−∞(R)S = C−∞(R)S - 
omplete.

3.2. Sheaf of distributions.

De�nition. Let U1 ⊆ U2 ⊆ Rn be open sets. Every fun
tion f ∈ C∞c (U1) 
an

be extended to a fun
tion f̃ ∈ C∞c (U2) by de�ning f̃ |U2\U1
≡ 0, hen
e we have

an embedding C∞c (U1) →֒ C∞c (U2). This embedding de�nes a restri
tion map

C−∞(U2)→ C−∞(U1), mapping ξ 7→ ξ |U1
, with ξ |U1

(f) := ξ(f̃).

Remark. For an open U ⊂ Rn, the topology on C∞c (U) is generally not the indu
ed

topology from C∞c (Rn) under the embedding C∞c (U) →֒ C∞c (Rn). For every 
om-

pa
t K ⊂ U , we have C∞K (U) ⊂ C∞c (U). Here the topology on C∞K (U) is indeed

the indu
ed topology from C∞c (U).

We will prove next that with respe
t to the restri
tion of distributions de�ned

above, the distributions form a sheaf.

Lemma: Let f ∈ C∞c (U), U =
⋃
i∈I

Ui. Then f 
an be written as a sum f =
∑
i∈I

fi

where fi ∈ C
∞
c (Ui). Moreover, for every x ∈ U , the number of sets |{i ∈ I : fi(x) 6=

0}| will be �nite.

Proof. We 
an assume that Ui are balls (otherwise, repla
e ea
h Ui by the balls


overing it). Denote K := supp (f). It is a 
ompa
t set 
overed by open balls,

so there exists a �nite sub-
over: K ⊆
n⋃
i=1

Ui =
n⋃
i=1

B (xi, ri). Sin
e the 
over is

open and K is 
losed, there exists ǫ > 0 su
h that K ⊆
n⋃
i=1

B (xi, ri − ǫ). Let ρi be

smooth step fun
tions satisfying ρi|B(xi,ri−ε) ≡ 1, ρi|B(xi,ri)
c ≡ 0. Sin
e ∀x ∈ K,∑n

i=1 ρi(x) 6= 0, we 
an de�ne:

fi =





ρi·f∑
n
i=1

ρi
x ∈ K

0 x /∈ K

�
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Theorem. With respe
t to the restri
tion map de�ned above, the distributions form

a sheaf, that is, given an open U ⊆ Rn, and open 
over U =
⋃
i∈I

Ui, we have:

1) (Identity axiom) Let ξ ∈ C−∞(U). If ∀i, ξ|Ui
≡ 0, then ξ|U ≡ 0.

2) (Glueability axiom) Given a 
olle
tion {ξi}i∈I , ξi ∈ C
−∞(Ui) that agree on in-

terse
tions (i.e. ∀i, j ∈ I, ξi|Ui∩Uj
≡ ξj |Ui∩Uj

), there exists ξ ∈ C−∞(U), satisfying

ξ|Ui
≡ ξi for any i.

Proof. 1) Given f ∈ C∞c (U) we need to show ξ(f) = 0. Indeed, by the lemma

f ≡ f1 + ...fn, with fi ∈ C
∞
c (Ui). Hen
e ξ(f) = ξ(

n∑
i=1

fi) =
n∑
i=1

ξ(fi) = 0.

2) We �rst use the fa
t that there exists a partition of unity, that is, 1 =
∑
λi(x)

where supp(λi) ⊆ Ui and the sum is �nite for any x ∈ U an also that for any


ompa
t K ⊆ U we have that λi|K ≡ 0 for all but �nitely many i's. Now �x some

partition of unity {λi} and let ξi ∈ C
−∞(Ui). De�ne ξ(f) :=

∑
i∈I ξi(λif). Note

that f is supported in some 
ompa
t K so the sum is �nite, so this is well de�ned.

It is 
lear that ξ is linear. We need to prove that it is 
ontinuous, and that ξ|Ui
= ξi:

Let fn → f ∈ C∞c (U). Then also λi · fn → λi · f as the multipli
ation (f, g) 7−→

f · g is 
ontinuous. As suppfn ∪ Suppf ⊆ K for some K ⊆ U , we have that

fλi ≡ 0 for all but �nitely many i's so we 
an write ξ(f) :=
∑n
i=1 ξi(λif) and

ξ(fn) :=
∑n

i=1 ξi(λifn) for any n. By the 
ontinuity of ξi, ξi(λi · fn) → ξi(λi · f)

and therefore ξ(fn) =
∑
i ξi(λi · fn) →

∑
i ξi(λi · f) = ξ(f) so ξ 
ontinuous. Now

let f ∈ C∞c (Uj), then

ξ(f) =
∑

i

ξi(λif) =
∑

i

ξj(λif) = ξj(
∑

i

λif) = ξj(f)

where the se
ond equality follows from the fa
t that λif ∈ C∞c (Uj ∩ Ui) and

ξi|Ui∩Uj
≡ ξj |Ui∩Uj

.

There is also a se
ond proof for the 
ontinuity of ξ is working with the open sets

in the topology of C∞c (U): As ξi are 
ontinuous, they are bounded in some 
onvex

open set Bi of 0, so ξi(Bi) < ǫ. Noti
e that Conv(∪Bi) is open in

⊕
i∈I C

∞
c (Ui)

(where ea
h Bi is an open set in C∞c (Ui) and hen
e a set in

⊕
i∈I C

∞
c (Ui)), as

Conv(∪Bi) ∩ C
∞
c (Ui) = Bi. Noti
e that ϕ(Conv(∪Bi)) is open. Now let f ∈

ϕ(Conv(∪Bi)). We 
an write f =
∑n

ji=1 aifi where fi ∈ Bji and

∑
ai = 0.

Therefore ξ(f) :=
∑
ξi(aifi) <

∑
ai · ǫ = ǫ and ξ is bounded on B. �
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3.3. Filtration on a spa
e of distributions.

Exer
ise. V := C∞c (U) = {f ∈ C∞c (Rn) : ∀x /∈ U, ∀ di�erential operator L, Lf(x) = 0}.

Consider U = Rn r Rk. We wish to des
ribe the spa
e of distributions supported

in Rk, denoted C−∞
Rk (Rn). Noti
e that:

C−∞
Rk (Rn) = {ξ ∈ C−∞(Rn)|∀f ∈ C∞c (Rn rRk) it holds that ξ(f) = 0}

and by 
ontinuity this equals

= {ξ ∈ C−∞(Rn)|∀f ∈ C∞c (Rn/Rk) it holds that ξ(f) = 0} = {ξ| ξ|V = 0}

Noti
e that we 
an de�ne a natural des
ending �ltration on V by:

V ⊆ Vm = {f ∈ C∞c (Rn)|∀i ∈ Nn−k where |i| ≤ m it holds that

∂if

(∂x)
i |Rk = 0}

We see immediately that f ∈ Vm(C∞c (Rn)) implies f ∈ Vm−1(C
∞
c (Rn)), hen
e

this is a des
ending 
hain. A

ordingly, we 
an de�ne a as
ending �ltration on

C−∞
Rk (Rn) by:

Fm(C−∞
Rk (Rn)) = V ∗m = {ξ ∈ C−∞

Rk (Rn) : ξ|Vm
= 0} ⊆ C−∞

Rk (Rn).

Exer
ise. 1) ∩Vm = V = C∞c (Rn rRk).

2) ∪Fm 6= C−∞
Rk (Rn).

3) Let U ⊆ Rn be open and U 
ompa
t. Show that for every ξ ∈ C∞
Rk(R

n)∗ there

exists ξ′ ∈ Fm su
h that ξ|U = ξ′|U , thus
⋃∞
i=0 Fi 
overs C

∞
Rk(R

n)∗ lo
ally.

4) Consider a smooth fun
tion ϕ : Rn → Rn that �xes Rk. Show that 
hanging


oordinates using ϕ for ξ ∈ Fi we get a distribution in Fi (so Fi is preserved under


hange of 
oordinates: ϕ∗(Fi) = Fi , meaning: ∀ξ ∈ Fi, ξ(ϕ(f)) ∈ Fi).

Theorem. Fm ≃ ⊕i∈Nn−k,|i|≤m
∂i(C−∞(Rk))

(∂x)i
as ve
tor spa
es.

Proof. 1)We will prove form = 0. Let ξ ∈ C−∞(Rk), we 
an assign φ : ξ 7−→ ξ̃ ∈ F0

by ξ̃(f) = f |Rk . Noti
e that ξ̃(f) = 0 for any f ∈ F0 so it is well de�ned. It is


lear that it is inje
tive as if ξ̃(f) = 0 for all f ∈ C∞c (Rn) then ξ(f |Rk) = 0 for any

f but any map g ∈ C∞c (Rk) 
an be extended to g̃ su
h that g̃|Rk = g. It is left to

prove surje
tivity and we are done. Let η ∈ F0. Assign η 7−→ η̃ ∈ C−∞(Rk) by

η̃(f) := η(f̃) where f̃ satisfy f̃ |Rk = f .

Noti
e that η̃ is well de�ned as if f̃ , g̃ satisfy f̃ |Rk = g̃|Rk = f then η(g̃) = η(f̃).

Also η̃ is 
ontinuous as if fn −→ f then we 
an 
hoose lifts su
h that f̃n −→ f̃ and
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as η is 
ontinuous it follows. We got that φ(η̃) = η so φ is surje
tive and we are

done. Now for m > 0 this is a generalization to the exer
ise that any distribution

supported on 0 is a 
ombination of derivatives of δ, and it will be proved in le
ture

5. �

We 
an de�ne Gm = ⊕i∈Nn−k,|i|=m
∂i(C−∞(Rk))

(∂x)i
and hen
e Gm ≃ Fm/Fm−1.

Exer
ise. Show that this de
omposition is not invariant under 
hange of 
oordi-

nates, that is ϕ(Gm) 6= Gm, ϕ(G(i)) 6= G(i) where (i) is a multi-index.
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4. Le
ture 4 - P adi
 numbers and L spa
es

We want to �nd integer solution for an equation of the form of an integer valued

polynomial p(X) = 0. If there exists su
h a solution X , then it must satis�es

the same equation modulo some prime p and also modulo pn for any 1 < n ∈ N.

Therefore we want to de�ne some �
reature� denoted Zp, su
h that having a solution

in Zp is the same as having a solution modpn for any n. For this we will need to

de�ne the p-adi
 numbers.

4.1. De�ning p-adi
 numbers.

De�nition. 1) A topologi
al �eld is a �eld F , together with a topology, su
h that

addition, multipli
ation and the multipli
ative and additive inverses are 
ontinuous

operations.

2) Given a �eld F , an absolute value is a fun
tion | | : F → R+
that satis�es:

* The triangle inequality : |x+ y| ≤ |x|+ |y|.

*|x||y| = |xy|.

*|x| = 0⇔ x = 0.

For topologi
al �eld we demand the absolute value to be 
ontinuous map. Noti
e

that every absolute value satis�es |1| = 1 (as |1| = |1| · |1|, and |1| 6= 0).

Example. 1) The trivial absolute value, de�ned by: |x|0 :=




0 x = 0

1 x 6= 0

2) The standard absolute value on R, whi
h we'll denote | |∞.

Now if we want to solve the equation f(X) = 0 modulo pn we want pn to be zero.

Therefore, when we de�ne the p-adi
 norm we want ‖pn‖ to be �very small� as n

grows.

De�nition. For any given integer a we de�ne the ordpa to be the highest power

m of p su
h that pm|a. For x = a/b ∈ Q we de�ne ordpx = ordpa− ordpb. De�ne

the p− adic norm by ‖x‖p = 0 if x = 0 and ‖x‖p = 1/pordpx otherwise.

Proposition. The map ‖ ‖p de�ned above gives an absolute value on Q.
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Proof. ‖a/b‖p = 0 then either a/b = 0 or ordpa = ∞ and therefore a/b = 0. Note

that:

∥∥∥ac
bd

∥∥∥
p
=

1

pordp(ac)−ordp(bd)
=

1

pordp(a)−ordp(b)
·

1

pordp(c)−ordp(d)
=
∥∥∥a
b

∥∥∥
p
·
∥∥∥ c
d

∥∥∥
p

and also that triangle inequality holds:

∥∥∥a
b
+
c

d

∥∥∥
p
=

∥∥∥∥
ad+ bc

bd

∥∥∥∥
p

= 1/(pordp(ad+bc)−ordp(bd)) ≤ 1/(pmin(ordp(ad),rdp(bc))−ordp(b)−ordp(d)) =

1/(pmin(ordp(a)+ordp(d),ordp(b)+ordp(c))−ordp(b)−ordp(d)) = 1/(pmin(ordp(a)−ordp(b),ordp(c)−ordp(d))) =

1/(pmin(ordp(x),ordp(y))) = max(
∥∥∥a
b

∥∥∥
p
,
∥∥∥ c
d

∥∥∥
p
) ≤

∥∥∥a
b

∥∥∥
p
+
∥∥∥ c
d

∥∥∥
p
.

�

De�nition. A norm is 
alled non ar
himedean if ‖x+ y‖ ≤ max(‖x‖ , ‖y‖) always

holds. In parti
ular, if ‖x‖ 6= ‖y‖ ⇒ ‖x+ y‖ = max(| ‖x‖ , ‖y‖). Note that by the

last proposition,‖ ‖p is non ar
himedean.

2) Two norms | |, | |′ on F are 
alled equivalent (denoted | | ∼ | |′) if for any

{an} ∈ Q, an is a Cau
hy sequen
e with respe
t to | | i� it is a Cau
hy sequen
e

with respe
t to | |′.

Theorem. (Ostrowski Theorem) Every non-trivial norm ‖ ‖on Q is equivalent to

‖ ‖p for some p, or the usual norm on Q indu
ed from R, denoted ‖ ‖∞.

Proof. Case (i): There exists n ∈ N su
h that ‖n‖ > 1. Let n0 be the least su
h n.

So there exists 0 < α < 1 ‖n0‖ = nα0 . We write ea
h n in the base of n0, that is we


hoose 0 ≤ {ai} < n and {ai} ∈ N su
h that n = a0 + a1n0 + ...akn
k
0 . Note that:

‖n‖ =
∥∥a0 + a1n0 + ...akn

k
0

∥∥ ≤ ‖a0‖+ ‖a1‖ · nα0 + ...+ ‖ak‖ · n
αk
0

By the 
hoi
e of n0 we have that ‖ai‖ ≤ 1 so

‖n‖ ≤
∑

i

niα0 = nkα0 (
∑

(1 + n−α0 + ...n−kα0 ) ≤ nα ·

(
∞∑

t=1

(
n−α0

)t
)

= nα · C
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sin
e n ≥ nk0 . Therefore ‖n‖ ≤ n
α ·C and the 
onstant C doesn't depend on n. By


hoosing large enough N we 
an show that

∥∥nN
∥∥ ≤ nNα ·C so ‖n‖ ≤ nα ·C1/N

for

any N . This implies that ‖n‖ ≤ nα

Now we get the inequality in the other dire
tion also: if n is written in the base of

n0 as before, we have that nk+1
0 > n ≥ nk0 . Also

∥∥nk+1
0

∥∥ =
∥∥n+ nk+1

0 − n
∥∥ ≤ ‖n‖+

∥∥nk+1
0 − n

∥∥ ,

so using ‖n‖ ≤ nαand n ≥ nk0 we get:

‖n‖ ≥
∥∥nk+1

0

∥∥−
∥∥nk+1

0 − n
∥∥ ≥ nα(k+1)

0 −
(
nk+1
0 − n

)α
≥ n

α(k+1)
0 −

(
nk+1
0 − nk0

)α

= n
α(k+1)
0 (1−

(
1−

1

n0

)α
≥ nαC′(n0, α).

.

Again, ‖n‖ ≥ nα so ‖n‖ = nα. This de�nes the norm uniquely on all Q as ‖ab‖ =

‖a‖ · ‖b‖ so taking a = m, b = n/m we get ‖n/m‖ = (n/m)
α
. By writing Cau
hy

sequen
es we see that ‖ ‖αis equivalent to ‖ ‖∞.


ase ii) For any n ‖n‖ ≤ 1:

Let n0be the least n su
h that ‖n‖ < 1 (otherwise ‖n‖ = 1 for any n 6= 0). n0 must

be a prime sin
e if n0 = n1 · n2 then the norm of n1 or n2 must be smaller than 1

and we get a 
ontradi
tion to the minimality of n0. Denote p = n0. We 
laim that

‖q‖ = 1 if q 6= p prime:

Suppose ‖q‖ < 1, so for large N we have

∥∥qN
∥∥ < 1/2 . Also, for large M we have∥∥PM

∥∥ < 1/2. sin
e gcd(pM , qN ) = 1 then there existsm,n su
h thatmpM+nqN =

1 but then:

1 = ‖1‖ =
∥∥mpM + nqN

∥∥ ≤
∥∥mpM

∥∥+
∥∥nqN

∥∥ = ‖m‖·
∥∥pM

∥∥+‖n‖
∥∥qM

∥∥ < 1/2+1/2 < 1

So ‖q‖ = 1. Now let a = pb11 · ... · p
br
r . If we denote ‖p‖ = ρ then we get that‖a‖ =

‖p‖
ordp(a) = ρordp(a). This de�nes the norm uniquely on Q. It is an easy exer
ise

to show that this norm is equivalent to ‖ ‖p. �

Proposition. Show that for any 2 norms on a �eld ‖ ‖1 , ‖ ‖2are equivalent i�

‖ ‖1 = ‖ ‖
α
2 .
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Proof. Assume ‖ ‖1 = ‖ ‖
α
2 . Then it is 
lear that ‖an‖ −→ 0 i� ‖an‖

α
−→ 0. Now

let ‖ ‖1 , ‖ ‖2 be equivalent norms . We divide to 
ases, a

ording to Ostrowski

theorem:

Case1:‖ ‖1 = ‖ ‖α and ‖ ‖2 = ‖ ‖β for 0 < α, β < 1.

Case2: ‖ ‖1 ∼ ‖‖p , ‖ ‖2 ∼ ‖‖q. If q 6= p then the norms are not equivalent as

{pk} is a Cau
hy series in ‖ ‖1 but not in ‖ ‖q. Therefore by the proof of the last

theorem, ‖a‖1 = ‖p‖
ordp(a) = ρ

ordp(a)
1 and ‖a‖2 = ‖p‖

ordp(a) = ρ
ordp(a)
2 = ρ

βordp(a)
1

for any a ∈ Z and therefore ‖ ‖2 = ‖ ‖
β
1 .

Case 3: ‖ ‖1 ∼ ‖‖p , ‖ ‖2 ∼ ‖‖∞(or the opposite) . Then {p
k} is a Cau
hy series in

‖ ‖1 but not in ‖ ‖2. �

Proposition. Prove that addition, multipli
ation, and inverse is 
ontinuous for

any norm on a �eld F .

Proof. Let ǫ > 0 and x, y ∈ F . Let x′, y′ be su
h that ‖x′ − x‖ < ǫ/2 ,‖y′ − y‖ <

ǫ/2. Then ‖(x+ y)− (x′ + y′)‖ ≤ ‖x′ − x‖+‖y′ − y‖ < ǫ. For multipli
ity inverse:

Let x and ǫ > 0, we have

‖x− x′‖ < δ = min(ǫ · ‖x‖
2
/2, 1/2)

then ‖x− x′ + x′‖ ≤ ‖x− x′‖ + ‖x′‖ < δ + ‖x′‖ and the same for ‖x′ − x+ x‖ ≤

‖x− x′‖+ ‖x‖ < δ + ‖x‖so |‖x‖ − ‖x′‖| < δ.

‖1/x′ − 1/x‖ =

∥∥∥∥
x′ − x

xx′

∥∥∥∥ = ‖x− x′‖ / ‖xx′‖ =

‖x− x′‖ / ‖x‖ ‖x′‖ < δ ·
1

‖x‖
2
(1 − δ)

< ǫ ‖x‖
2
/2 ·

2

‖x‖
2 = ǫ.

The same idea for additive inverse, and multipli
ation. �

There are several ni
e properties of a non-ar
himedean norm:

1) every triangle (x, y, z) is isos
eles! (�shve shokaim�).

2) every open ball of radius r with 
enter x has all of its points as a 
enter as well.

Proof: Let y ∈ B(x, r), and z ∈ B(y, r), then ‖z − x‖ = ‖z − y + y − x‖ ≤

max(‖z − y‖ , ‖y − x‖) ≤ r so z ∈ B(x, r) so B(y, r) ⊆ B(x, r). The other way, let

w ∈ B(x, r), then ‖w − y‖ = ‖w − x+ x− y‖ ≤ max(‖w − x‖ , ‖y − x‖) ≤ r. So

B(y, r) = B(x, r).

3) Every Ball Br(x) is open and 
losed.
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4) If 2 p-adi
 balls are not distin
t, then one of them 
ontains the other.

Proof: Let be B(x, r1) and B(y, r2) su
h that B(x, r1) ∩ B(y, r2) 6= /O then there

exists z su
h that ‖z − x‖ < r1 and ‖z − y‖ < r2. Lets assume r2 ≥ r1 Let

w ∈ B(x, r1) then

‖w − y‖ = ‖w − x+ x− z + z − y‖ ≤ max(‖w − x‖ , ‖x− z‖ , ‖z − y‖) ≤ r2.

Now we 
an de�ne the p-adi
 numbers.

De�nition. Let p be a prime number. The �eld of p-adi
 numbers, denoted Qp,

is the 
ompletion of Q with respe
t to the p-adi
 absolute value. The 
ompletion

is de�ned just as we did in the 
ase of the ar
himedean norm on Q- by equivalen
e


lasses of Cau
hy sequen
es. Therefore, any element a ∈ Qp is represented by a

Cau
hy sequen
e {an} ∈ Q with respe
t to ‖ ‖p. We say that a ∼ b if {an} ∼ {bn}

if ‖an − bn‖p −→ 0 and we de�ne the norm of a ∈ Qp by limi→∞ ‖ai‖p (it exists

by the following proposition).

Remark. Noti
e that just like R, this 
ompletion is not algebrai
ally 
losed. Try to

�nd an equation in Qp when the solution is not in Qp.

Proposition. If {ai} is a Cau
hy series in Q with respe
t to ‖ ‖p , then limi→∞ ‖ai‖p
exists.

Remark. If {ai} equivalent to {0} then by de�nition it exists. Else, for every ǫ > 0

there is a sub-sequen
e aiksu
h that ‖aik‖p > ǫ. We take N large enough su
h that

‖ai − ai′‖p < ǫ for every i, i′ > N , by the Cau
hy property. Then ‖ai − aik‖p < ǫ,

so ‖aik − ai‖p < ‖aik‖p so by the property that every triangle is isos
eles, we have

that ‖aik‖p = ‖aik − (aik − ai)‖p = ‖ai‖p. So there exists N su
h that ‖ai‖p is


onstant for i > N .

Theorem. Qp is 
omplete.

Proof. Let {aj} ∈ Qp be a sequen
e of equivalen
e 
lasses with{aji} their represen-

tatives as Cau
hy sequen
es in Q . Assume that {aj} is Cau
hy, i.e, there exists

M su
h that for any j, j′ > M :

‖{aj − aj′}‖ := lim
i
‖aji − aj′i‖ < ǫ.

This means that there isNj,j′ su
h that for i > Nj,j′ : ‖aji − aj′i‖ < ǫ. In parti
ular,

for any j, there exists Nj su
h that for any i, i′ ≥ Nj : ‖aji − aji′‖ < p−j . We 
laim

that {b} = {akNk
} is the limit of {aj}. Noti
e that:

‖{b− aj}‖ = lim
k
‖{akNK

− ajk}‖ = lim
k

∥∥akNk
− akNj,k

+ akNj,k
− ajNjk

+ ajNjk
− ajk

∥∥ .
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For large enough k we have, for any j > M :

∥∥akNk
− akNj,k

+ akNj,k
− ajNjk

+ ajNjk
− ajk

∥∥ ≤ max(
∥∥akNk

− akNjk

∥∥ ,
∥∥akNjk

− ajNjk

∥∥ ,
∥∥ajNjk

− ajk
∥∥) −→

So {b} is indeed the limit. �

Theorem. Every equivalen
e 
lass a ∈ Qp for whi
h ‖a‖p ≤ 1 has exa
tly one

representative Cau
hy sequen
e of the form {ai} for whi
h:

1) 0 ≤ ai < pi for i = 1, 2, ...

2) ai ≡ ai+1(mod(p
i)) for i = 1, 2, ...

Proof. At �rst we prove the uniqueness: If {a′i} is a di�erent sequen
e satisfying

(1) and (2) and if there exists i0 su
h that ai0 6= a′i0 then ai 6= a′i(mod(p
i0 )) for

every i > i0. Therefore ‖ai − a
′
i‖ > 1/pi0 so {a′i}, {ai} are not equivalent. Now we

prove existen
e: Suppose we have a Cau
hy sequen
e {bi} ∈ Qp, we want to �nd an

equivalent sequen
e {ai} with the above property. We use the following lemma: �

Lemma. If x ∈ Q and ‖x‖p ≤ 1, then for any i there exists an integer α ∈ Z su
h

that ‖α− x‖p ≤ p
−i
. The integer α 
an be 
hosen in the set {0, 1, 2, ...pi − 1}.

Proof. Let x = a/b written in the form where (gcd(a, b) = 1). Sin
e ‖x‖p ≤ 1 it

follows that p does not divide b and therefore b and piare relatively prime. Then

we 
an �nd m,n ∈ Z su
h that bm+ npi = 1 . The intuition is that bm is 
lose to

1 up to a small p-adi
 length so it is a good approximation to 1 so am is a good

approximation to a/b. So we pi
k α = am and get:

‖α− x‖ = ‖am− a/b‖ = ‖a/b‖ · ‖bm− 1‖ ≤ ‖bm− 1‖ =
∥∥npi

∥∥ ≤ 1/pi

Note that we 
an add multiples of pi to α and still have

∥∥α− k · pi − x
∥∥ ≤ max(1/pi, 1/pi) ≤ 1/pi.

Therefore we 
an assume that α ∈ {0, ....pi − 1}. �

Now ba
k to the proof:

Proof. Ba
k to {bi}. Let Nj be the number su
h that for every i, i′ > Nj we have

‖bi − bi′‖ < p−j , and we 
an 
hooseNj to be stri
tly in
reasing with j, and Nj > j.

Observe that ‖bi‖ ≤ 1 if i > N1. Indeed, for all i
′ > N1 we have that ‖bi − bi′‖ <

1/p , ‖bi‖ ≤ max(‖bi′‖ , ‖bi − bi′‖) and for i′ →∞ we have that ‖bi′‖ → ‖a‖p ≤ 1.
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Now we use the lemma and get a sequen
e {aj} when 0 ≤ aj < pj su
h that∥∥aj − bNj

∥∥ < p−j . We 
laim that{aj} is equivalent to {bi}, and satis�es the 
ondi-

tions of the theorem. It is indeed satis�es the 
onditions as:

‖aj+1 − aj‖ =
∥∥aj+1 − bNj+1

+ bNj+1
− bNj

− (aj − bNj
)
∥∥

≤ max(
∥∥aj+1 − bNj+1

∥∥ ,
∥∥bNj+1

− bNj

∥∥ ,
∥∥aj − bNj

∥∥) ≤ p−j

So aj+1 − aj has at least p
j
as a 
ommon divisor as required.

Furthermore, for any j and any i > Nj :

‖ai − bi‖ =
∥∥ai − aj + aj − bNj

− (bi − bNj
)
∥∥ ≤ max(‖ai − aj‖ ,

∥∥aj − bNj

∥∥ ,
∥∥bi − bNj

∥∥) ≤ p−j .

So {ai} ∽ {bi}. �

Now, if we have some {a} ∈ Qp with ‖a‖ ≥ 1 then there exists some m su
h that

‖a · pm‖ ≤ 1 and we have numbers with negative powers. Therefore we 
an present

the p-adi
 numbers as:

Qp := {

∞∑

i=−k

ai · p
i, where ai ∈ {0...p

i − 1}}.

We de�ne the ring of integers , denoted Zp as Zp := {x ∈ Qp| ‖x‖p ≤ 1} or equiva-

lently Zp := {
∑∞
i=0 ai · p

i, where ai ∈ {0...p
i − 1}} or equivalently Zp := Z‖ ‖

p
- the


losure of Z with respe
t to the p-adi
 norm. Noti
e that Zp is indeed a ring and

that the only invertible elements are x ∈ Zp with ‖x‖p = 1.

4.2. p-adi
 expansions. We want to write the p-adi
 expansions of elements q

in Q. If q ∈ N, that's just writing its p-base expansion. For example, (126)5 =

”...002001.” Let x := m
n be some rational number, with (n,m) = 1. It is enough to

des
ribe the expansion when p ∤ m (that is, when x ∈ Zp ∩Q) as otherwise we 
an

multiply x by pk for some k, 
al
ulate the expansion, and move the point k pla
es

to the left.

We 
an't take remainder of x modulo p, as with integers. Instead, we 
an 
al
ulate

the fra
tion x = m
n in Fpk for k ∈ N. Thus, the expansion of x in Qp is 
al
ulated

indu
tively:
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• Write the digit x0 := [mn ] ∈ Fp.

• The nominator of the di�eren
e

m
n −x0 = m−n·x0

n is divisible by p. Rede�ne

our fra
tion to be x := 1
p · (

m
n − x0), and 
ontinue indu
tively.

Example. Cal
ulate

1
2 ∈ Q7. We start by solving the equation 2x0 = 1(mod7).

The answer is x0 = 4. In the se
ond 
ase we 
al
ulate 1
7 (

1
2−4) = x1. So 2·(7x1+4) =

1(mod49). Therefore x1 = 3. We 
ontinue by indu
tion and get the required

expansion.

Every ball in Qp is a disjoint union of p balls. For p = 2, the ball Z2 = Bc(0, 1) =

Bo(0, 2) 
onsists of numbers with no digits to the right of the point. It's a disjoint

union of two balls, B0 and B1 - where ea
h Bi 
onsists of all numbers ending with

the digit

′i′. Similarly, B0 = B00

⋃
B01, B1 = B10

⋃
B11, where the elements in

Bij end with the digits

′ij′. And so on.

This re
ursive stru
ture implies p-adi
 integers are homeomorphi
 to the Cantor

set.

Exer
ise. Show Zp ∼= Cantor set as topologi
al spa
es, where the Cantor set has

the topology indu
ed by the real numbers. The exer
ise proves Zp is a 
ompa
t set.

4.3. Inverse limits.

De�nition. Let A1 ← A2 ← A3 ← ... be a sequen
e of Abelian groups {Ai}

together with a set of homomorphisms {fij : Aj → Ai | j > i}, su
h that fik =

fij ◦ fjk, ∀i ≤ j ≤ k. An inverse limit of a sequen
e of Abelian groups is de�ned

by:

lim←−Ai = {
−→a ∈

∏

i∈N

Ai : ai = fij(aj), ∀i ≤ j ∈ N}

Exer
ise. 1) Take Ai := Z/piZ, and fij to be the proje
tion Z/pjZ → Z/piZ.

Prove that lim←−Z/p
nZ ≃ Zp as a topologi
al ring.

2)Qp is the lo
alization by p of Zp and Qp = p−1Zp = {p
−ka|a ∈ Zp} ≃ lim←−Q/p

nZ,

again, as topologi
al rings.

2) Prove that Qp ≃ Cantor set - {1}.

3) Prove that Qnp
∼= Qp.

4) Let U ⊂ Qnp be some open set. Show that either U is homeomorphi
 to the

Cantor set, or to Cantor set-{1}.
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4.4. Haar measure and lo
al �elds. Let X be a topologi
al spa
e. Let Cc(X)

be the spa
e of 
ontinuous fun
tions with 
ompa
t support on X and 
onsider

Cc(X)∗- the spa
e of smooth measures.

Theorem. (Haar): Let G be a lo
ally 
ompa
t topologi
al group. Then:

1) There exists a measure µon X su
h that µ(U) = µ(gU) for any measurable set

(Or equivalently, there exists φ ∈ Cc(X)∗ su
h that for any g ∈ G, φ(f) = φ(fg)

where fg(x) = f(g−1 · x)).

2) This measure is unique up to a s
alar.

Exer
ise. 1) Prove Haar theorem for (Qp,+).

2) We 
an de�ne another invariant measure µa(B) = µ(aB) for any a ∈ Qp. Show

that µa = |a| · µ.

De�nition. A local field is a topologi
al �eld that is not dis
rete and lo
ally


ompa
t.

Theorem. Any lo
al �eld F is isomorphi
 (as topologi
al �eld) to one of the fol-

lowing:

* Ar
himedean �elds- R or C.

* Finite extensions of Qp.

* Finite extensions of the formal Laurent series: - Fq((t)) = {
∑∞
i=−k ait

i} where

Fq is a �nite �eld (so q may be some power of p).

Proof. The main points of the proof are as follows:

(1) De�ne the measure on F+
using Haar Theorem. We 
an de�ne absolute value,

up to s
alar multipli
ation, that is, there exists α(a) su
h that, µa = α(a)µ→ |a| ≡

α(a).

(2) Prove that every lo
al �eld has a norm that de�nes its topology, whi
h de�ned

as a s
alar multipli
ation of Haar measure.

(3) Prove that every 
ompa
t metri
 spa
e is 
omplete.

(4) Every lo
al �eld of 
har 0 in
ludes Q and its 
ompletion. This means that F


ontains R if it is ar
himedean, and Qp if it is non-ar
himedean.
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(5) Show that if F is 
hara
teristi
 0, then F must be a �nite extension of R or Qp,

otherwise (non algebrai
 extension) it will not be 
ompa
t. Show that any su
h

�nite extension is indeed a lo
al �eld.

(6) For char(F ) 6= 0 show that F 
ontains a trans
endental element, name it t, and

show that it 
ontains Fq((t)). Show that F is a �nite extension of Fq((t)). �

4.5. Some basi
 properties of l-spa
es.

De�nition. An l−space X is an Hausdor�, lo
ally 
ompa
t an totally dis
onne
ted

topologi
al spa
e.

Exer
ise. 1) This de�nition is equivalent to having a basis of open 
ompa
t subsets

(and being Hausdor�).

2) Any non-ar
himedean lo
al �eld is an l-spa
e.

3) Finite produ
ts, and open/
losed subsets of an l-spa
e is an l-spa
e. Note that

any subset of a totally dis
onne
ted topologi
al spa
e is totally dis
onne
ted.

De�nition. A spa
e is 
alled countable at∞ if X = ∪n∈ZKn whereKn is 
ompa
t.

Exer
ise. 1) Find a 
ompa
t l-spa
e X and U ⊆ X su
h that U is not 
ountable

at ∞.

2) Every σ-
ompa
t, S1 l-spa
e X is homeomorphi
 to one of the following:

(a) Countable (or �nite) dis
rete spa
e.

(b) Cantor set.

(
) Cantor set minus a point.

d) Disjoint union of b) or c) with a).

De�nition. Refinement of a 
over ∪Ui = X is a 
over {Vj} su
h that for any j,

we have that Vj ⊆ Ui for some i.

Exer
ise. 1) Let C ⊆ X be a 
ompa
t subset of an l-spa
e. Then any 
over has

an open 
ompa
t disjoint re�nement.

2) Let X be a 
ountable at∞ l-spa
e, then any 
over has an open 
ompa
t disjoint

re�nement.
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Distributions on l-spa
es.

De�nition. Let X be an l-spa
e. A fun
tion f from X to the �eld will be 
alled

a smooth fun
tion if for every point x ∈ X there is an open neighborhood U su
h

that the restri
tion f |U is 
onstant.

Proposition. Let X be an l-spa
e. Show that the smooth fun
tions C∞(X) sep-

arates the points in X. Assuming this exer
ise, the Stone-Weierstrass theorem

implies that C∞(X) is dense in C(X).

Proof. Let x, y ∈ X . As X is Hausdor� and having a basis of open 
ompa
t, .

there exists Ux and Uy 
ompa
t and open. Set f(Ux) = 0 and f(X/Ux) = 1. Then

f(x) = 0, and f(y) = 1. �

De�nition. The fun
tions with 
ompa
t support, C∞c (X) ⊂ C∞(X), are 
alled

S
hwartz fun
tions. We denote them by S(X). We also denoteDist(X) = C∞c (X)∗ =

S(X)∗. We 
onsider both spa
es as ve
tor spa
es without topology.

Exer
ise. Let X be an l-spa
e, show that C∞c (X)∗ is a sheaf.

Remark. In Rn, the S
hwartz fun
tions are the fun
tions whose derivatives de
rease

faster than every polynomial, and C∞c (Rn) ⊂ S(X) ⊂ C∞(Rn). We will de�ne

them in the next le
tures.

4.6. Distributions supported on a subspa
e. Re
all that over R, the des
rip-

tion of distributions on a spa
e X that are supported on Z is a little 
ompli
ated

(we did that using �ltrations). Distributions on l-spa
es behave mu
h better.

De�nition. Let X be an l-spa
e, the support of a distribution ξ ∈ S∗(X) is Suppξ

= the smallest 
losed subset S su
h that ξ|X\S = 0.

Proposition. Let i : S∗(Z)→ S∗Z(X) be the map indu
ed by the restri
tion Res :

S(X) −→ S(Z). Then i is an in
lusion.

Proof. We prove it by showing the dual map j : S(X) → S(Z) is onto. Let

f ∈ S(Z). As f is lo
ally 
onstant and 
ompa
tly supported, we may assume that

Z is 
ompa
t and has a 
overing by a �nite number of open sets Uα (open in Z)

with f |Uα
= cα. Noti
e that ea
h Uα, is of the form Uα = Wα ∩ Z, where Wα is

open in X . Therefore, Z ⊆ {Wα}, and as Z is 
ompa
t, we may re�ne {Wα} and

get that Z ⊆ ∪iVi when Vi open 
ompa
t and Vi ∩ Z ⊆ Wα ∩ Z = Uα for some

α. Therefore we 
an extend f by de�ning f(x) = cα if x ∈ Vi ⊆ Wα and zero

otherwise. �
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Proposition. (Exa
t Sequen
e of an Open Subset). Let U ⊆ X be open and set

Z = X \ U . Then 0→ S(U)→ S(X)→ S(Z)→ 0 is exa
t.

Proof. We showed that S(X)�S(Z) is onto, and it is 
lear that extension by zero

S(U)�S(X) is inje
tive. It is left to prove exa
tness in the middle. Let f ∈ S(X)

su
h that f |Z = 0. As f is lo
ally 
onstant, there is an open set V ⊇ Z su
h that

f |V = 0. This implies that f is supported on ZC = U and therefore f |U ∈ S(U). �

Corollary. Let X be an l-spa
e, and Z ⊂ X a 
losed subspa
e. Then:

1) The in
lusion i : S∗(Z)→ S∗Z(X) is an isomorphism.

2) There is an exa
t sequen
e 0→ S∗(Z)→ S∗(X)→ S∗(X\Z)→ 0.

Remark. Note that over R, the map i is not onto . For example, for Z := {0} ⊂ R,

the derivatives δ
(n)
0 ∈ S∗Z(R

n) but not in the image of i. Moreover, on Rnwe have

an exa
t sequen
e:

0→ S∗Z(X)→ S∗(X)→ S∗(X\Z).

Exer
ise. Let V be a ve
tor spa
e (maybe in�nite-dimensional) over a �eld K,

and L ⊂ V a linear subspa
e. Show that ∀f ∈ L∗ ∃g ∈ V ∗ : g|L ≡ f . Use Zorn's

lemma.

So far we showed two advantages of distributions on l-spa
es over distributions on

Rn:

(1) Every distribution ξ supported on some Z ⊂ X is also supported on a

neighborhood of Z.

(2) The map i : S∗(Z)→ S∗Z(X) is onto.

Both these qualities 
an be a
hieved over Rn by swit
hing from C∞c (Rn) to real-

valued S
hwartz fun
tions. A third advantage is:

Proposition. Let X,Y be l-spa
es. Given f1 ∈ S(X), f2 ∈ S(Y ), 
onsider the

bilinear map φ : S(X)⊗S(Y )→ S(X×Y ) where (φ(f1⊗f2))(x, y) := f1(x) ·f2(y).

Then φ is lo
ally 
onstant and an isomorphism of ve
tor spa
es.

Proof. The lo
ally 
onstant property is easy to see by re�nement of the open sets

in X and Y . Surje
tivity: let f ∈ S(X × Y ). Then f =
∑
cUi×Vi

and by

re�ning {Ui × Vi} we may assume that they are disjoint. Noti
e that ea
h term

cUi×Vi
∈ φ(f1, f2) so we are done.
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Inje
tivity: Assume that φ(
∑

i f1i ⊗ f2i))(x; y) :=
∑
i f1i(x) · f2i(y) = 0. We 
an

assume that {f1i} are linearly independent and that {f2i} are non zero and that

the sum is minimal with respe
t to those demands. If we take some y su
h that

f21(y) 6= 0 we get that for any x ∈ X ,

∑
i f1i(x) · f2i(y) = 0. This implies that

f1i(x) are linearly dependent. Contradi
tion. Hen
e f2i ≡ 0 and hen
e f1i⊗f2i ≡ 0

and 
ontradi
tion to the minimality of the summation. �

5. Le
ture 5- Distribution with values on a ve
tor spa
e

De�nition. Let F be a lo
al �eld. V a ve
tor spa
e over F . We 
an de�ne

C∞c (X,V ) to be the spa
e of smooth fun
tions with 
ompa
t support from X to

V , with the same 
onvergen
e 
ondition as in the usual V = F 
ase. Here the

smoothness of a fun
tion is the usual 
oordinate-wise one.

Exer
ise. Prove that C∞c (X,V ) ∼= C∞c (X)⊗F V as topologi
al ve
tor-spa
es, the

topology on C∞c (X)⊗F V is given by 
hoosing a basis to identify V with Fn and

then take the produ
t topology on C∞c (X)⊗F F
n ∼=can (C∞c (X))n. In parti
ular,

this topology is independent on a 
hoi
e of a basis.

5.1. Smooth measures. Ameasure has 2 equivalent de�nitions: A σ additive map

from the σ-algebra of Borel subsets of X into R. For us, the following de�nition is

better:

De�nition: Let X be a lo
ally 
ompa
t topologi
al spa
e. The spa
e of signed

measures onX is Cc(X)∗, i.e. a 
ontinuous fun
tional on C∞c (X). A signed measure

is a measure if it is non-negative on non-negative fun
tion.

As the spa
e Cc(X) is larger than C∞c (X), its dual is smaller. Spe
i�
ally Cc(X)∗ ⊆

C∞c (X)∗, the in
lusion is the dual of the obvious 
ontinuous map C∞c (X) →֒ Cc(X).

Inside Cc(X)∗ there is a one dimensional spa
e of Haar measures, whi
h in this 
ase

is just the spa
e of multiples of the Lebesgue measure.

De�nition: Let V be a lo
ally 
ompa
t f.d ve
tor spa
e (If it is not �nite dimen-

sional then it 
an't be lo
ally 
ompa
t). The spa
e of Haar measures on V , denoted

hV ⊆ Cc(V )∗, is the spa
e of translation invariant measures.

The fa
t that this spa
e is one dimensional is non-trivial, but the intuition is as

follows: A Borel measure onX is determined by its value on 
ubes with sides parallel

to the axes planes of rational side length, as they form basis of the topology. It is

not hard to see that if the measure is translation invariant, the measures of these


ubes are determined by the measure of the unit 
ube.
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Exer
ise. Let ξ ∈ C∞c (X)∗ whi
h is translation invariant. Prove that ξ is a Haar

measure. Note that C∞c (X)∗ ! Cc(X)∗so there might be other translation invariant

fun
tionals other then the Haar measure.

De�nition. A measure µ on V is 
alled a smooth measure if µ ∈ C∞(V )hV , i.e.

µ = f(x)h where f is smooth and h is a Haar measure. We denote this spa
e

by µ∞c (V ). Note that by de�nition, µ∞c (V ) ≃can C∞c (V, hV ) ≃ C∞c (V ) ⊗ hV


anoni
ally, and also µ∞c (V ) ≃ C∞c (V ) by 
hoosing some Haar measure, but this

isomorphism is not 
anoni
al.

5.2. Generalized Fun
tions Versus Distributions. We are now in position to

understand the di�eren
e between generalized fun
tions and distributions.

A distribution on V is 
ontinuous fun
tional on the spa
e of smooth fun
tions with


ompa
t support:

Dist(V ) := C∞c (V )∗

.A generalized fun
tion is a 
ontinuous fun
tional on the spa
e of smooth measures

with 
ompa
t support on V , i.e.

C−∞(V ) := C∞c (V, hV )
∗.

As fun
tions 
an be integrated against smooth measures, thus we have a pairing

C∞c (V, hV )× C
∞
c (V )

<,>
→ F . Though we have the following pi
ture:

C−∞c (V )
≃
⇐⇒ Dist(V )

j ↑ i ↑

C∞c (V )
≃
⇐⇒ µ∞c (V )

And the diagonals are dual to ea
h other. The in
lusion i : µ∞c (V ) →֒ Dist(V ) is via

the pairing C∞c (V, hV ) × C
∞
c (V )

<,>
→ F , and the in
lusion j : C∞c (V ) →֒ C−∞c (V )

is de�ned by f 7−→ ϕf where ϕf (µ) =
´

fdµ for a smooth measure µ.

Exer
ise. hV ≃ Dist(V )V or equivalently Dist(V )V is one dimensional, for any

�nite dimensional ve
tor spa
e V over a lo
al �eld F .

De�nition. We 
an also de�ne generalized fun
tions with value in a ve
tor spa
e,

by either:

1) C−∞(V,E) := C−∞(V )⊗ E

2) C−∞(V,E) := C∞c (V, hV ⊗ E
∗)∗

and then C−∞(V, hV ) := C−∞(V )⊗ hV = C∞c (V )∗ = Dist(V ).
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Exer
ise. 1) Show that the two de�nition for C−∞(V,E) are equivalent.

2) De�ne an embedding C∞c (V,E) →֒ C−∞(V,E).

5.3. Some linear algebra. Let V be an n dimensional ve
tor spa
e over a lo
al

�eld F . Let Ωtop(V ) be the spa
e of anti-symmetri
 n-forms on V . It is a one-

dimensional spa
e, and Ωtop(V ) =
∧n

(V ∗).

Exer
ise. Let B be the spa
e of bases of V . Show that Ωtop(V ) = {f : B → F :

f(B1) = det(MB2

B1
)f(B2)} and also that Ωtop(V ) = {f : V n�F : f(Av1, ..., Avn) =

det(A)f(v1, ..., vn)}.

De�nition. If V is over R, then we have two related spa
es, the spa
e of densities

and the spa
e of orientations:

Dens(V ) = {f : B −→ R : f(B1) =
∣∣∣det(MB2

B1
)
∣∣∣ f(B2)}

And

Ori(V ) = {f : B −→ R : f(B1) = sign(det(MB2

B1
)) · f(B2)}

Exer
ise. Ωtop(V ) = Dens(V ) ⊗ Ori(V ), via the tensor produ
t of the natural

maps Ωtop(V )→ Dens(V ) and Ωn(V ) −→ Ori(V ).

Note that this spa
e of orientation is a linear spa
e and not two points as one expe
t

from orientation. On the other hand, we have two distinguished points in Ori(V ),

the two fun
tions with absolute value 1. These are the usual orientations we used

to think of.

Exer
ise. Dens(V ) ≃can hV .

De�nition. Let F be a lo
al �eld with absolute value | |. We 
an de�ne a fun
tor

| |on V from one dimensional ve
tor spa
es over F to one dimensional ve
tor spa
es

over R, by

|V | := {f : V ∗ −→ R|f(αv) = |α| f(v)}

Exer
ise. 1) |L⊗M | = |L| ⊗ |M |.

2) |Ωtop(V )| ≃ Dens(V ).

3) If W ⊆ V then hW ⊗ hV/W ∼=can hV .

4) W ⊆ V , Ωtop(V ) ≃ Ωtop(W )⊗ Ωtop(V/W )

5) If F = R, then Ori(V ) = Ori(W ) ⊗Ori(V/W ).
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5.4. Generalized Fun
tions With Support on a Subspa
e. Let W ⊆ V be

a linear spa
es. We showed that over a non ar
himedean �eld F , DistW (V ) =

Dist(W ), and for F = R we have des
ribed the 
ase of V = Rn and W = Rk. The

goal now is to des
ribe the distributions on V supported on W for any W ⊆ V

linear spa
es over R. Re
all that inside Dist(V ), there is a subspa
e DistW (V ) of

distributions supported on W . We have de�ned a �ltration F iW (V ) on C∞c (V ) by

F iW (V ) = {f ∈ C∞c (V ) : Df |W = 0, |D| ≤ i}

and we have de�ned Fi,W (V ) ⊆ DistW (V ) by

Fi(V )W =
(
C∞c (V )/F iW (V )

)∗
:= {ξ ∈ Dist(V )|〈ξ, f〉 = 0 for any f ∈ F iW (V )}

We denote Fi(V )W = F iW (V )⊥ where Y ⊥ := (X/Y )
∗
. We want to des
ribe

Fi(V )W /Fi−1(V )W in 
anoni
al terms, i.e. in a way invariant under di�eomor-

phisms preserving W .

Theorem. We have a (V,W )-di�eomorphism preserving isormophism of ve
tor

spa
es:

Fi(V )W /Fi−1(V )W ∼=can C
∞
c (W,Symi(W⊥))∗ ≃ Dist(W )⊗ Symi(V/W ).

Observe that Symi(W⊥) = SymPoly(V/W, ..., V/W ;R) = {f : V i −→ R|f |W×V×...×V =

0}. The theorem is based on the following lemma:

Lemma. Fi(V )W /Fi−1(V )W ∼= (F i−1W (V )/F iW (V ))∗.

Proof. For φ ∈ Fi(V )W , φ|F i−1

W
(V ) vanish on F iW (V ), and we send it to the indu
ed

fun
tional on F i−1W (V )/F iW (V ), denoted φ̃. This is an inje
tive morphism, as if

φ̃ = 0 then φ|F i−1

W
(V ) = 0 so φ ∈ Fi−1(V )W . surje
tivity follows from Hahn-Bana
h

theorem in the following way: any ϕ ∈ (F i−1W (V )/F iW (V ))∗ 
an be extended to

ϕ̃ ∈
(
C∞c (V )/F iW (V )

)∗
= Fi(V )W . Therefore [ϕ̃] + Fi−1(V )W 7−→ ϕ. �

Hen
e, in order to prove the theorem it will be su�
ient to prove that F i−1W (V )/F iW (V ) ∼=

C∞c (W,Symi(W⊥)). For this we will do the natural thing- atta
h to f its i-th

derivatives. Expli
itly, we de�ne:

Φ(f)(w)(v1, ..., vi) = ∂v1 ...∂vif(w).

It is well de�ned as f vanish identi
ally on W , so this form kills all the tangential

derivatives. It is one-to-one as if Φ(f) = 0, then f vanish with all of its derivatives

up to degree i so it is in F iW (V ).
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Exer
ise. 1) prove that Φ is onto, hen
e an isomorphism.

2) Show that the isomorphism Fi(V )W /Fi−1(V )W ∼=can C∞c (W,Symi(W⊥))∗ is

invariant with respe
t to di�eomorphism of (V,W ).

3) Find ξ ∈ Dist(V −W ) s.t there is no η ∈ Dist(V ) su
h that η|V−W = ξ. That

is, the natural map Dist(V ) −→ Dist(V −W ) is not onto.

For the generalized-fun
tions 
ase, we get the same result by twisting with Haar

measures. Indeed,

Fi(V )W /Fi−1(V )W ∼= C∞c (W,Symi(W⊥))∗ = C−∞(W,Symi(W⊥)⊗ hW )

. Take Gi(V )W = Gi(V )W ⊗h
∗
V ⊆ C

−∞(V ). We get, by the 
ompatibility of tensor

and quotient,

Gi(V )W /Gi−1(V )W ∼= C−∞(W,Symi(W⊥)⊗hW )⊗h∗V
∼= C−∞(W,Symi(W⊥)⊗hW⊗h

∗
V )

But what is this (one dimensional) spa
e hW ⊗ h
∗
V ?

Exer
ise. If W ⊆ V , then:

1) hW ⊗ hV/W ∼=can hV .

2) h∗V = hV ∗
.

From the exer
ise it follows that

hW ⊗ h
∗
V = (h∗W ⊗ hV )

∗ = (h∗W ⊗ hW ⊗ hV/W )∗ = h∗V/W = h∗(W⊥)∗ = hW⊥ .

Corollary. By the above argument it follows that:

Gi(V )W /Gi−1(V )W ∼= C−∞(W,Symi(W⊥)⊗ hW⊥).

6. Le
ture 6- Manifolds

De�nition. 1) Let X be a topologi
al spa
e. A 
over {Ui} is 
alled locally finite,

if for any x ∈ X there is a neighborhood V su
h that V interse
ts only �nite number

of sets in the 
over.

2) A topologi
al spa
e X is 
alled paracompact, if any open 
over has a re�nement

that is lo
ally �nite.

3) A toplologicalmanifold is a topologi
al spa
e X that is lo
ally homeomorphi


to Rn, Hausdor� and para
ompa
t.
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Exer
ise. 1) Find a spa
e X whi
h is lo
ally homeomorphi
 to Rn at every point

and is para
ompa
t but is not Hausdor�.

2) Find a spa
e whi
h is Hausdor�, lo
ally isomorphi
 to Rn but is not para-


ompa
t.

We will now give a de�nition for (smooth) manifolds that is di�erent then the usual

de�nition in di�erential topology. We will use the following more general de�nition

of sheaves of fun
tions:

De�nition. A sheaf of (K-valued) fun
tions F on a topologi
al spa
e X is an as-

signment U 7−→ F(U) ⊆ {f : U −→ K| f is 
ontinuous} su
h that:

1) F(U) is an algebra with unity.

2) ResUVF(U) ⊆ F(V ) is the usual restri
tion f 7−→ f |U .

3) For every open 
over U =
⋃
i∈I

Ui, if there exists a set of fun
tions {fi} ∈ F(Ui) s.t.

: fi|(Ui∩Uj) ≡ fj|(Ui∩Uj) for any i, j ∈ I then there exists f ∈ F(U) s.t. f |Ui
≡ fi

for any i ∈ I.

A sheaf of fun
tions on X will be denoted by a pair (X,F)

Remark. Note that the se
ond demand implies the identity axiom.

Example. Fun
tion sheaves 
an be �
ontinuous fun
tions onX�, �smooth fun
tions

on X�.

De�nition. 1) Let (X,F), (Y,G) be sheaves of fun
tions. Then a morphism ϕ :

(X,F) −→ (Y,G) is a map ϕ : X −→ Y su
h that ∀g ∈ G(U) we have that

g ◦ ϕ|ϕ−1(U) ∈ F(ϕ
−1(U)). In other words, a map ϕ# : G −→ ϕ∗F .

2) A smooth manifold is a spa
e with fun
tions (X,C∞(X)), where X is a topolog-

i
al manifold and for every point x ∈ X there is a open neighborhood U su
h that

(U,C∞(X)|U ) ≃ (Rn, C∞(Rn)) as sheaves of fun
tions, that is maps ϕ : U −→ Rn,

ϕ# : (Rn, C∞(Rn)) −→ ϕ∗C
∞(X)|U and ψ : Rn −→ U , ψ# : C∞(X)|U −→

ψ∗C
∞(Rn)) su
h that ϕ = ψ−1 and (ψ ◦ ϕ)

#
= IdC∞(X)|U , (ϕ ◦ ψ)

#
= IdC∞(Rn).

Remark. The usual de�nition of manifolds adds an "atlas" to the stru
ture of

X : an open 
over X =
⋃
i∈I

Ui with di�eomorphism φi : Ui → Rn. But we also

demand thatφi◦φ
−1
j is di�erentiable, so it looks like an �extra� demand with respe
t

to the de�nition above. If we look 
losely, we see that a pair of isomorphisms
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ϕi : (Ui, C
∞(Ui)) −→ (Rn, C∞(Rn)), and ϕj : (Uj , C

∞(Uj)) −→ (Rn, C∞(Rn))

implies that

(
ϕi ◦ ϕ

−1
j |Ui∩Uj

)#
: (Rn, C∞(Rn))|ϕj(Ui∩Uj) −→

(
ϕi ◦ ϕ

−1
j

)
∗
(Rn, C∞(Rn))|ϕi(Ui∩Uj)

is an isomorphism. In parti
ular, by the following exer
ise, we 
an dedu
e that

ϕi ◦ ϕ
−1
j |Ui∩Uj

is smooth and a
tually a di�eomorphism. Therefore the 2 above

de�nitions for smooth manifolds are equivalent.

Exer
ise. 1) Show that C∞(Rn;Rk) = {f : Rn −→ Rk : f∗(µ) ∈ C∞(Rn)∀µ ∈

C∞(Rk)}.

2) A map f :M −→ N is a smooth map of manifolds i� it is a morphism of ringed

spa
es (sheaves of smooth fun
tions).

A theorem by Whitney shows that every n-dimensional manifold 
an be embedded

in R2n+1
.

6.1. Tangent spa
e of a manifold. There are several �equivalent de�nition� for a

tangent spa
e of a smooth manifoldM at a point x ∈M . We will give a 
ategori
al

de�nition and then we will give several proofs of existen
e that they will all be

equivalent.

De�nition. A tangent spa
e of a smooth manifoldM at a point x ∈M is a fun
tor

Tan : (M,x) 7−→ TxM from pointed smooth manifolds to ve
tor spa
es satisfy the

following 
onditions:

1) (V, 0) 7−→ V .

2) If f1, f2 : (M,x) −→ R satisfy that (f1 − f2) (y) = o(‖x− y‖) for any norm ‖ ‖

on a manifold, then Tan(f1) = Tan(f2).

3) If U →֒M is an open embedding, then Tan((U, x) →֒ (M,x)) is an isomorphism.

There are several stru
tures that satisfy the above 
onditions:

(1) Tx(M) := {γ : ((−1, 1), 0)→ (M,x)} modulo the relation γ1 ∼ γ2 i� exists

a neighborhood U of x and a isomorphism φ : U → Rn s.t. (φ ◦ γ1)
′(x) −

(φ ◦ γ2)
′(x). It is easy to 
he
k that this de�nition doesn't depend on the


hoi
e of (φ, U)

(2) Tx(M) = {d : C∞(M) → R| d is linear, d(f · g) = df · g(x) + f(x) · dg}.

This is the spa
e of derivations.

(3) De�ne mx := {f ∈ C∞(M) | f(x) = 0}, and take Tx(M) := (mx/m
2
x)
∗
.
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Exer
ise. Show the de�nitions are equivalent.

De�nition. Now let φ : M → N be smooth. The di�erential of φ in x ∈ M is a

linear map dxφ : Tx(M)→ Tφ(x)(N) that dx(φ)(γ) := φ ◦ γ.

Exer
ise. Show that given manifolds M,N,K and maps φ : M → N,ψ : N →

K, ν = ψ ◦ φ :M → K, the di�erentials satisfy dx(ν) ≡ dφ(x)(ψ) ◦ dx(φ).

6.2. Type of maps of smooth manifolds.

De�nition. Let φ :M → N be a smooth map between manifolds.

*φ is an immersion if dxφ is one-to-one.

* φ is a submersion if dxφ is onto.

* φ is a lo
al isomorphism or étale if dxφ is one-to-one and onto.

* φ is an embedding if it's an immersion and there is a homeomorphismM ∼= φ(M).

* φ is a proper map if for every 
ompa
t K, the preimage φ−1(K) is 
ompa
t. In

parti
ular, �bers are 
ompa
t in M .

* φ is a 
over map if for x ∈ N there exists a neighborhood U ⊆ M , su
h that

φ|φ−1(U) : φ−1(U) → U is a di�eomorphism, and is a 
omposition φ−1(U) →

U ×D → U for a dis
rete set D.

Example. 1) Let φ : [−1, 1] → R2
be a smooth path that slows to a stop in

φ(0) = (0, 0), but spends no time in (0, 0). That is, all the derivatives are zeroed

φ(n)(0) = 0, but φ(x) 6= 0 for all x in some neighborhood [−ǫ, ǫ]. Su
h a φ is

one-to-one around 0, but is not an immersion at 0.

2) An immersion isn't ne
essarily one-to-one. An example is a self-interse
ting path

φ : R→ R2
with 
onstant speed.

3) Let L,D be �nite dimensional linear spa
es. The di�erential of a map φ ∈

Hom(L, V ) is φ itself. Thus, a one-to-one φ will be an immersion, an onto φ will

be a submersion, and an isomorphism of linear spa
e will be an étale.

Exer
ise. 1) Find a φ : M → N whi
h is a one-to-one immersion, but isn't an

embedding.

2) Show that every proper map whi
h a one-to-one immersion is a 
losed embedding.

3) Show that a proper map whi
h is an étale is a 
over map, and that a 
over map

with �nite �bers is proper and étale.
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De�nition. A fibration is a map X
p
−→ Y , where lo
ally p−1(U) ≃ U × Z for

U ⊆ Y and some topologi
al ve
tor spa
e Z.

Exer
ise. A proper submersion is a �bration.

De�nition. Given a submanifoldX ⊆M , and an embedding i : X →M , we de�ne

the normal bundle at a point x ∈ M to be Nx(M) := i∗(TM)/TX . Similarly, the


onormal bundle is CNx(M) := (Nx(M))∗.

Example. For M = S2
the normal bundle at a point will give the normal ve
tor

to it. It will be isomorphi
 to the trivial bundle on M .

6.3. Analyti
 manifolds and Ve
tor bundles. We would like to introdu
e to

more important stru
tures: an analyti
 F - manifold (for any lo
al �eld F ) and a

real ve
tor bundle.

De�nition. 1) An analyti
 F -manifold is a spa
e M whi
h is lo
ally isomorphi


to Fn together with a sheaf of fun
tions

An(U) = {f : U → F : ∀x ∈ U, ∃r > 0 s.t. f|Br(x)(y) =
∑

~k∈Nn

a~k(x− y)
~k},

where Br(x) is the ball of radius r around x, and ~k is a multi-index, thus (x−y)
~k =

n∏
i=0

(xi − yi)
ki
.

2) A smooth analyticmanifold is a ringed spa
e (of fun
tions) (X,F) lo
ally iso-

morphi
 to (Fn, An).

Remark. We don't have partition of unity in analyti
 manifolds. If an analyti


fun
tion zeroes in some neighborhood, it must be the zero fun
tion.

Example. There exists singular analyti
 manifolds, and in parti
ular any singular

a�ne algebrai
 variety.

De�nition. Let M be a smooth manifold or a p-adi
 analyti
 manifold. A real

ve
tor bundle overM is a tuple (E, p) where E is a topologi
al spa
e and p : E →M

is a 
ontinuous surje
tion su
h that:

1) For every x ∈M we have a stru
ture of a �nite dimensional real ve
tor spa
e on

p−1(x) = Vx .

2) For every x ∈ M there exists an open x ∈ U and a lo
al trivialization ϕU :

Vx×U → p−1(U) where ϕU is a homeomorphism (or di�eomorphism if M is a real

smooth manifold) and p ◦ ϕU (v, x) = x for all v ∈ Vx.
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3) The maps v 7→ ϕU (v, x) are linear isomorphisms.

If E ≃ V ×M we say (E, p) is a trivial bundle over M .

Example. 1) (exer
ise) TheMobius strip is homeomorphi
 to I×S1
. By extending

ea
h segment I to R, we 
an de�ne a bundle over the manifold S1
. This way, the

points in E are pairs (θ, x), where x runs over the points of the line of angle 0.5 · θ.

De�ne the ve
tor bundle above rigorously and show it is not di�eomorphi
 to the

bundle S1 × R. You 
an assume the Mobius strip isn't di�eomorphi
 to the S1
.

2) The tangent bundle ofM = S1
is TS1 ≃ S1×R. The tangent spa
e at any point

is one-dimensional, and 
hanges smoothly as we "walk" on the 
ir
le. However, on

M = S2
the tangent bundle will not be isomorphi
 to S2 × R2

. This holds sin
e

every ve
tor �eld on S2
vanishes ("you 
an't 
omb a hedgehog").

De�nition. Let (M,E) be a ve
tor bundle. Given neighborhoods U, V , 
onsider

ϕ−1V ◦ϕU : (U∩V )×Rk −→ (U∩V )×Rk. We 
an write ϕ−1V ◦ϕU (x, v) = (x, gUV (v))

where gUV ∈ GL(R
k). The maps gUV are 
alled transition functions.

Noti
e that the set of transition fun
tions gUV , satisfy the 
o
y
le 
onditions

gUU (x) = Id, gUV (x)gVW (x) = gUW (x). Conversely, given a �ber bundle (E,X, π,Rk)

with a GL(Rk) 
o
y
le a
ting in the standard way on the �ber Rk, there is asso
i-

ated a ve
tor bundle. This is sometimes taken as the de�nition of a ve
tor bundle.

De�nition. Let E1, E2 be two ve
tor bundles over M . The dire
t sum E1 ⊕E2 is

de�ned as follows:

Given a bundle π1 : E1 −→M and π2 : E1 −→M , and a 
olle
tion of trivializations

φ1i : π
−1
1 (Ui) −→ Ui × Rk, φ2i : π

−1
2 (Vi) −→ Vi × Rk, by re�ning the 
overs we may

assume that Vi = Ui. Now de�ne E1 ⊕ E2 :=
⊔
m∈M E1,m ⊕ E2,m as a set where

Ei,m = π−1i (m). The map π : E1⊕E2 −→M is de�ned by the 
anoni
al proje
tion.

We de�ne the topology on E1⊕E2 by the trivializations ψi : π
−1(Ui) −→ Ui×R2k

by ψi(m, (v, w)) = (m,φ1i (m, v), φ
2
i (m,u)). It is easily seen that the transition

fun
tions ψj ◦ ψ
−1
i : Ui ∩ Uj × R2k −→ Ui ∩ Uj × R2k

satisfy

ψj ◦ ψ
−1
i (m, (v, u)) = (m,φ1j

(
φ1i
)−1

(m, v), φ2j
(
φ2i
)−1

(m,u))

and as φ1 and φ2 satisfy the 
o
y
le 
onditions, so does ψ. This de�nes a stru
ture

of a ve
tor bundle.

Exer
ise. Find non-isomorphi
 bundles E,E′, su
h that E⊕F ∼= E′⊕F for some

bundle F (Hint: use ve
tor bundles over S2
).
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Similarly, we 
an de�ne tensor produ
ts of bundles, multilinear n-forms, and their

absolute value and sign.

Exer
ise. 1) Let Φ : V ectn −→ V ectm be a �smooth� fun
tor, i.e, Φ(T ),T ∈

Hom(V,W ) ≃ Rn
2

is a smooth map from Rn
2

to Rm
2

. De�ne fun
tor Φ̃ : V ecBun(M)n −→

V ecBun(M)m.

2) For ve
tor bundles E1, E2, de�ne the following notions: ( you 
an, and advised

to, use part 1)

(a) E∗1 .

(b) E1 ⊕ E2.

(
) E1 ⊗ E2.

(d) For an embedding ϕ : E1 →֒ E2, de�ne E2/E1.

(e)

∧k(E1), Sym
k(E1).

(f) In the real/
omplex 
ase, de�ne Dens(E1).

De�nition. 1) Let M be a smooth manifold, we 
an de�ne its density bundle by

DM = |Ωtop(TM)|, that is the density bundle of the tangent bundle.

2) Let X be an F analyti
 manifold, we de�ne its density bundle by DX =

|Ωtop(TX)|.

6.4. se
tions of a bundle. A set theoreti
 section of a fun
tion f : X → Y is

a fun
tion g : Y → X s.t. g ◦ f ≡ id. For example, for f : R2 → R whi
h is

the proje
tion f(x, y) := x a se
tion 
an be g(x) := (x, sinx). This a just be a

(
ontinuous) 
hoi
e of representatives of �bers.

In our 
ase, se
tions of bundles 
an help us de�ne many basi
 
on
epts. For exam-

ple:

• A se
tion of the tangent bundle is a vector field.

• A se
tion of kth exterior power of the 
otangent bundle is a differential form

of degree k.

• A se
tion of the density bundle is 
alled a density.

• A se
tion of the orientations bundle is an orientation on a manifold.
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Exer
ise. 1) Show the every manifold has a Riemannian metri
, i.e , an inner

produ
t on tangent spa
es

<,>p: TpM × TpM → R

whi
h varies smoothly.

2) Let M be a smooth n-dimensional Riemannian manifold, that is a smooth real

manifold with a Riemannian metri
. Constru
t expli
itly a density over M , that

is a smooth se
tion of the density bundle over M . The density should respe
t


oordinate 
hanges, and be the standard density whenM is a linear spa
e with the

standard inner produ
t.

Remark. We don't always have top di�erential forms on a manifold, and the Mobius

strip is a 
ounter-example. However, we 
an always de�ne densities.

Sin
e a density over a spa
e gives us a measure on it, we 
an thus de�ne integrals

over manifolds.

6.5. Equivalent des
ription of ve
tor bundles.

De�nition. Let V be a �nite dimensional ve
tor spa
e and X a topologi
al spa
e.

We de�ne the constant sheaf V X to be the shea��
ation of the 
onstant presheaf,

whi
h assigns to every open set in X the ve
tor spa
e V . We say that a sheaf F

over X is locally constant if for every x ∈ X there exists an open x ∈ Ux and a

�nite dimensional ve
tor spa
e Vx su
h that F|Ux
≃ VxUx

.

Exer
ise. 1) Let V be a �nite dimensional ve
tor spa
e and X a topologi
al spa
e.

Show that V X(U) 
onsists of the lo
ally 
onstant fun
tions from U to V .

2) Show that if X is a σ-
ompa
t ℓ-spa
e then every lo
ally 
onstant sheaf F where

Fx ≃ Fy for all x, y ∈ X is isomorphi
 to the 
onstant sheaf.

De�nition. Leray sheaf on X is a lo
al homeomorphism p : E −→ X .

Theorem. The de�nition of a Leray sheaf is equivalent to the Grothendie
k de�-

nition of a sheaf.

Proof. Given a Leray sheaf p we de�ne a Grothendie
k sheaf F(U) := {
ontinuous se
tions U −→

p−1(U)}. For the other dire
tion, given a Grothendie
k sheaf F , we de�ne E =⊔
x∈X Fx with the natural proje
tion map p : E −→ X . We de�ne a basis for

the topology of E by Us,V = {(x, (s)x) : x ∈ V } where V ⊆ X is open and

s ∈ F(V ). �
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Exer
ise. 1) Complete the proof by showing that those fun
tors indu
e an equiv-

alen
e of 
ategories.

2) Show that 
overing spa
es 
orrespond to lo
ally 
onstant sheaves, and that a


overing spa
e is trivial exa
tly when it 
orresponds to a 
onstant sheaf.

3) Give an example for a lo
ally 
onstant sheaf arising from a 
overing spa
e whi
h

is not 
onstant.

7. Distribution on analyti
/smooth manifolds

De�nition. Let E be an F -analyti
 one dimensional ve
tor bundle over an F -

analyti
 manifold X . De�ne a real ve
tor bundle |E| as follows. As a set de�ne

|E| := {(x, v)|x ∈ X, v ∈ |Ex|} and de�ne a topology by giving C the dis
rete

topology, so lo
ally E|U ≃ U × F and |E| |U ≃ U × |F | ≃ U ×C. Hen
e, a base for

the topology is Vi,U,α = ϕi(U × {α}) where ϕi : U × C −→ |E| |U and α ∈ C.

Remark. Note that p̃ : |E| −→ X is a lo
al homeomorphism as Vi,U,α ≃ U as a

topologi
al spa
e. Hen
e p̃ is a Leray sheaf. Its 
orresponding Grothendie
k sheaf

is F(U) := {
ontinuous se
tions U −→ p̃−1(U)}. This is a lo
ally 
onstant sheaf

CXover X .

De�nition. We 
an now de�ne density bundle over an F -analyti
 manifold X in

two ways:

Def 1 (Leray): DX := |Ωtop(X)|.

Def 2 (Grothendie
k):

DX(U) := {µ ∈Mesures(U)|∀ϕ ∈ OnF −→ U, there exists f ∈ C∞(OnF ) su
h that µ = ϕ∗(f ·Haar)}

Lemma. Let ϕ : Fn −→ Fn be analyti
 di�eomorphism and f ∈ Cc(F
n). Then

hFn(f) =:
´

fdx =
´

(f ◦ ϕ)dx · |det(Dxϕ)|.

Exer
ise. Show that the above de�nitions are equivalent.

7.1. Smooth se
tions of a ve
tor bundle. In this subse
tion we assume that

F = R and we are dealing with smooth manifolds.

De�nition. We de�ne

C∞c (M,E) := {f :M −→ E su
h that π◦f = IdM and ∃K 
ompa
t su
h that f |KC (m) = (m, 0)}
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Re
all that C∞c (Rn,Rk) = lim−→C
∞
Km

(Rn,Rk) where Km is an in
reasing sequen
e of


ompa
t sets. We will now de�ne a topology on C∞c (M,E) using the topology on

C∞c (Rn,Rk):

Case 1- The trivial 
ase: M ≃ Rn and E ≃ Rn × Rk −→ Rn. Note that


ontinuous se
tions from Rn to Rn × Rk just means a fun
tion in C∞c (Rn,Rk).

Hen
e we give C∞c (M,E) the topology of C∞c (Rn,Rk).

Exer
ise. Show that the above de�nition is well de�ned, i.e, doesn't depend on

the isomorphism M ≃ Rn and E ≃ Rn × Rk −→ Rn. In other words, show that:

(a) Given a di�eomorphism ϕ : Rn −→ Rn then it indu
es a homeomorphism

ϕ∗ : C∞c (Rn;Rn × Rk) −→ C∞c (Rn;Rn × Rk).

(b) Given a smooth map ψ ∈ C∞(Rn;GLk(R)) we have that ψ∗ : C∞c (Rn;Rn ×

Rk) −→ C∞c (Rn;Rn × Rk) is a homeomorphism.

Case 2- General 
ase: We 
an 
hoose small enough {Ui} su
h that M = ∪Ui

where ϕi : Ui
≃
−→ Rn and also ψi : E|Ui

≃
−→ Rn × Rk (an isomorphism of ve
tor

bundles). We have a surje
tive map

ϕ :
⊕

i∈I

C∞c (Ui, E|Ui
) ։ C∞c (M,E)

by summation (surje
tivity follows from partition of unity). Hen
e we 
an de�ne a

quotient topology a

ording to the map ϕ, that is, we de�ne a set U ⊆ C∞c (M,E)

to be open if ϕ−1(U) is open in

⊕
i∈I C

∞
c (Ui, E|Ui

) (with the dire
t sum topology).

Exer
ise. Prove that this �de�nition� is well de�ned, i.e, show that that the de�ni-

tion doesn't depend on the 
over Ui. Redu
e to showing that
⊕

i∈I C
∞
c (Ui,R

k) −→

C∞c (Rn,Rk) is open. The full proof for this exer
ise is at �Tirgul 6�.

Now we will give a di�erent des
ription for the topology of C∞c (Rn). At �rst observe

that f ∈ C∞c (Rn) i� for any g ∈ C∞(Rn), gf is bounded. Now let D ∈ Diff(Rn)-

di�erential operators on C∞c (Rn). De�ne a seminorm ‖f‖D by sup |D(f)|. We

get that C∞c (Rn) is an inverse limit of Bana
h spa
es BD where ea
h BD is the


ompletion of C∞c (Rn) with respe
t to ‖ ‖D.(Verify with Rami).

De�nition. Diff(M) is an operator on C∞(M) −→ C∞(M) su
h that for any

(or some) 
over ∪Ui = M su
h that ϕi : Ui −→ Rn we have that ϕ−1i ◦D ◦ ϕi ∈

Diff(Rn).
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Now we would like to de�ne Diff(C∞(M,E), C∞(M,E′)). Again we divide it into


ases:

Case 1-E,E′ is trivial: E ≃M×Rk and E′ ≃M×Rk
′

. ThenDiff(C∞(M,E), C∞(M,E′)) ≃

Diff(C∞(M)k, C∞(M)k
′

) and this is isomorphi
 (as ve
tor spa
es) to k × k′ ma-

tri
es with values in Diff(C∞(M)).

Exer
ise. Show that the de�nition of di�erential operatorD ∈ Diff(C∞(M,E), C∞(M,E′))

for E ≃M × Rk and E′ ≃M × Rk
′

doesn't depend on the isomorphisms.

Case 2- the general 
ase: Let A ∈ Hom(C∞(M,E), C∞(M,E′)). Then we say

that A ∈ Diff(C∞(M,E), C∞(M,E′)) i�:

* For any f1,2 ∈ C
∞(M,E) su
h that f1|U = f2|U , then Af1|U = Af2|U .

* If E′|U is trivializable then A|U ∈ Diff(U,E|U , E
′|U ).

De�nition. Se
ond de�nition for the topology on C∞c (M,E): For any D ∈

Diff(C∞(M,E), C∞(M,E)) de�ne ‖f‖D = sup |D(f)| (
hoose some norm on E).

De�ne the topology on C∞c (M,E) as

C∞c (M,E) = lim←−D(C
∞
c (M,E), ‖f‖D).

Exer
ise. Given a manifold M and a ve
tor bundle E over it show that the two

de�nitions of the topology on C∞c (M ;E) are equivalent (one de�ned via taking a


over of M and trivialization of E and the other through di�erential operators).

8. Distributions over geometri
 obje
ts

De�nition. 1) We de�ne distributions on smooth se
tions by Dist(M,E) :=

C∞c (M,E)∗.

2) We de�ne generalized se
tions on a smooth ve
tor bundle by C−∞(M,E) =

Dist(M,E∗ ⊗DM ), where DM is the density bundle.

We don't have a natural inje
tion from C∞c (M,E) to C∞c (M,E)∗ but we do have

a natural inje
tion i : C∞c (M,E) →֒ C−∞(M,E) as follows: Let µ ∈ C∞c (M,E∗ ⊗

DM ) and f ∈ C∞c (M,E). Note that f ⊗ µ ∈ C∞c (M,E∗ ⊗ E ⊗ DM ) (that is,

f ⊗ µ(m) = f(m)⊗ µ(m)). Note that we have a natural map q : C∞c (M,E∗ ⊗E ⊗

DM ) −→ C∞c (M,DM ) and a natural map

´

: C∞c (M,DM ) −→ C by integrating

onM a

ording to the measure de�ned by the se
tion of the density bundle. Hen
e

〈i(f), µ〉 =
´

M
q(f ⊗ µ). Therefore, the de�nition of generalized se
tions indeed

generalizes smooth se
tions.
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Exer
ise. Let M,N be either smooth or an F -analyti
 manifolds and let X,Y be

l-spa
es. Show that:

1) C∞c (M)
w
= C−∞(M).

2) C∞c (M)⊗C∞c (N) = C∞c (M)×C∞c (N) and C∞c (X)⊗C∞c (Y ) = C∞c (X)×C∞c (Y )

3) Find an example su
h that C∞c (X)∗ ⊗ C∞c (Y )∗ ≇ C∞c (X × Y )∗.The same for

(smooth/analyti
) manifolds (Hint: 
onsider X = Y = Z.)

4) Let E1,2 be 
omplex ve
tor bundles over M1,2, then C
∞
c (M1 ×M2, E1 ⊠ E2) =

C∞c (M1, E1)⊗C C
∞
c (M2, E2).

De�nition. Let X be an l-spa
e and F a sheaf over X . De�ne Fc(X) to be

the spa
e of 
ompa
tly supported global se
tions of F , that is, s ∈ F(X) su
h that

s|KC = 0 outside some 
ompa
t K. De�ne C∞c (X,F) := Fc(X).

Theorem. Let i : Z →֒ X be l-spa
es. Then:

1) Dist(X,F)|Z ≃ Dist(Z,F|Z) = i∗(F).

2) We have:

0 −→ Dist(Z,F|Z) −→ Dist(X,F) −→ Dist(U,F|U ) −→ 0.

We now want to prove the following important theorem:

Theorem. Let N ⊆M a 
losed (real) submanifold and E a bundle over M . Then

there is a 
anoni
al �ltration Fi ⊆ DistN(M,E) (supported on N ) su
h that:

i) Fi is lo
ally exhaustive, i.e,

⋃
Fi is lo
ally DistN (M,E).

ii) Fi/Fi−1 ≃ Dist(N,E|N ⊗ Sym
i(CNM

N )).

In order to prove the theorem, we would like to de�ne the notion of �vanishing of

kth derivative of a smooth se
tion f ∈ C∞c (M,E)�. The only problem is that the

notion of kth derivative depend on the 
hart de�ned onM so it is not well de�ned.

Fortunately, the notion of �vanishing kth derivative� is well de�ned as the following

exer
ise shows:

Exer
ise. Let f ∈ C∞(Rn,C) with f (i)(0) = 0 for every |i| < k, and ϕ : Rn −→ Rn

a di�eomorphism su
h that ϕ(0) = 0. Furthermore let g ∈ C∞(Rn,C×) be a smooth

fun
tion, and set f̃(x) = f ◦ ϕ−1(x)g(x).
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(a) Show that:

(
∂k

∂v1...∂vk
f̃

)
(0) =

(
∂k

∂ ((Dϕ)v1) ...∂ ((Dϕ)vk)
f

)
(0)g(0)

(b) Part (a) might not be true if f (i)(0) 6= 0 for some |i| < k.

As a 
onsequen
e of this exer
ise, given any f ∈ C∞c (M,E) su
h that f vanishes

with k − 1 derivatives, we 
an de�ne Dk
xf : TxM × ...TxM −→ Ex by

Dk
xf(ξ1,i, ..., ξk,i) =

(
∂k

∂ξ1,i...∂ξk,i
(f ◦ ϕ−1i )

)
(0)

where ϕi is a lo
al 
hart andξ1,i = (ϕi ◦ γ1)
′ (0) is some tangent ve
tor. If we 
hoose

a di�erent 
hart ϕj we get that

Dk
xf(ξ1,j , ..., ξk,j) =

(
∂k

∂ξ1,j ...∂ξk,j
(f ◦ ϕ−1j )

)
(0) =

(
∂k

∂ξ1,j ...∂ξk,j
(f ◦ ϕ−1i ◦ ϕ)

)
(0)

where ϕ := ϕi ◦ ϕ
−1
j . By the dis
ussion above, we get that

(
∂k

∂ξ1,j ...∂ξk,j
(f ◦ ϕ−1j )

)
(0) =

(
∂k

∂(Dϕ)ξ1,j ...∂(Dϕ)ξk,j
(f ◦ ϕ−1i )

)
(0)

But

Dxϕ(ξ1,j) = Dxϕ · (ϕi ◦ γ1)
′
(0) = (ϕ ◦ ϕi ◦ γ1)

′(0) = ξ1,i

So Dk
xf(ξ1,j , ..., ξk,j) = Dk

xf(ξ1,i, ..., ξk,i) and the de�nition is well de�ned. We 
an

now proof the theorem:

Proof. (of Theorem) Note that we 
an identify Dk
xf ∈ Symk(T ∗xM) ⊗ Ex. Let

N ⊆M be a submanifold. De�ne:

F iN (C∞c (M,E)) = {f ∈ C∞c (M,E)|∀x ∈ N, f vanishes with i− 1 derivatives}

Re
all that for lo
ally,M |U ≃ Rn andN |U∩N ≃ Rk, and we showed that F i−1W (V )/F iW (V ) ∼=

C∞c (W,Symi(W⊥)) using the map f 7−→ Dk
xf . Hen
e by applying a small gener-

alization we get:

F iN/F
i−1
N ≃ C∞c (N,E|N ⊗C Sym

i(CNM
N )).

This gives a 
anoni
al �ltration Fi ⊆ DistN(M,E) su
h that

Fi/Fi−1 ≃
(
F iN/F

i−1
N

)∗
≃ C∞c (N,E|N⊗CSym

i(CNM
N ))∗ = Dist(N,E|N⊗CSym

i(CNM
N )).

�
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Corollary. We have that Gri(C
−∞(M,E)N ) = C−∞(N,E|N⊗D

∗
M |N⊗Sym

i(NM
N ))⊗

DL).

Proof. We have that:

Gri(C
−∞(M,E)N ) = Gri(DistN (M,E∗ ⊗DM ))

≃ Dist(N,E∗|N⊗DM |N⊗Sym
i(CNM

N )) = C−∞(N,E|N⊗D
∗
M |N⊗Sym

i(NM
N ))⊗DL).

�

8.1. Operations on generalized fun
tions. At this subse
tion we assume X,Y

are either l-spa
es, analyti
 F -manifolds (with or without 
omplex bundles over

them), or smooth manifolds.

De�nition. Let ϕ : X −→ Y be a map. We 
an de�ne Pullback of the spa
e of

fun
tions by ϕ∗ : C∞(Y ) −→ C∞(X) by ϕ∗(f) = f ◦ϕ. It is easy to see that if ϕ is

proper then ϕ∗ : C∞c (Y ) −→ C∞c (X). This give rise to a de�nition of Pushforward

of distributions ϕ∗ : Dist(X) −→ Dist(Y ) by ϕ∗(ξ)(f) := ξ(ϕ∗(f)) = ξ(f ◦ ϕ).

Note that if ϕ is not proper then we have ϕ∗ : Dist(X)prop −→ Dist(Y ) where

Dist(X)prop := {ξ ∈ Dist(X)|ϕ|supp(ξ) is proper}. We would like to de�ne it by

ϕ∗ξ(f) = ξ(f ◦ ϕ). But f ◦ ϕ is not 
ompa
tly supported. Therefore we 
hoose

a 
uto� fun
tion ρ su
h that ρ|supp(ξ) = 1 and ρ|UC = 0 where U is a small

neighborhood of supp(ξ) su
h that ϕ|U is proper (This is a hard task to �nd su
h

a fun
tion). Hen
e we 
an de�ne ϕ∗ξ(f) := ξ(ρ · (f ◦ ϕ)). Note that supp(ρ · (f ◦

ϕ)) ⊆ supp(ρ) ∩ ϕ−1(supp(f)) ⊆ ϕ|−1supp(ρ)(suppf). Sin
e ϕ|suppρ is proper, and f

is 
ompa
tly supported, this is well de�ned. The de�nition 
learly doesn't depend

on the 
hoi
e of ρ.

Re
all that for ve
tor spa
es we had Dens(V ) ≃ haarV . Hen
e we identify/de�ne

the spa
e of smooth measures µ∞c (X) as a the spa
e of smooth se
tions of the

density bundle C∞c (X,DX). Note that we 
an de�ne ϕ∗ : C
∞
c (X,DX) −→ Dist(X)

by ϕ∗(µ)(f) =
´

X fdµ.

Exer
ise. ϕ∗(Distcomp(X)) ⊆ Distcomp(Y ).

Proposition. If ϕ : X −→ Y is a submersion, then:

1) ϕ∗(µ
∞
c (X)) ⊆ µ∞c (Y ).

2) In addition, if φ = f · |ωX | and ϕ∗(f · |ωX |) = g · |ωY |, where |ωX | , |ωY | are non-

vanishing densities on X,Y then g(y) =
´

ϕ−1(y) f
|ωX |
|ϕ∗ωY |

where

|ωX |
|ϕ∗ωY |

∈ Dϕ−1(y)
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satisfy that |ωX | ≃
|ωX |
|ϕ∗ωY |

⊗ |ωY | a

ording to the natural isomorphism (DX)x ≃

(Dϕ−1(y))x ⊗ (DY )ϕ(x).

Proof. 1) Case 1: X = Fn, Y = Fm and ϕ : Fn −→ Fm is the natural proje
tion

ϕ(x1, ..., xn) = x1, ..., xm. Re
all that haarX ≃ haarY ⊗ haarX/Y or equivalently

DX |(x1,...,xn) ≃ DY |(x1,...,xm) ⊗DX/Y |(x1,...,xn), where (x1, ..., xn) = x ∈ X/Y . Let

φ ∈ C∞c (X,DX) and note that φ = f · dµX where f ∈ C∞c (X) and µX is the


anoni
al Haar measure (taking the value 1 on the unit ball), so we 
an write

µX = µY ⊗ µX/Y . By de�nition, for any g ∈ C∞c (Y ) we have:

〈ϕ∗(φ), g〉 = 〈φ, g ◦ ϕ〉 =

ˆ

X

f · (g ◦ ϕ)dµX =

ˆ

Y

ˆ

X/Y

f · (g ◦ ϕ)dµY ⊗ µX/Y .

Sin
e g ◦ ϕ(x1, ..., xn) = g(x1, ..., xm) depends only on Y so we have

〈ϕ∗(φ), g〉 =

ˆ

Y

(
ˆ

X/Y

f · dµX/Y

)
· gdµY =

ˆ

Y

f̃ · gdµY

where f̃ ∈ C∞c (Y ). Hen
e ϕ∗(φ) is a smooth fun
tion.

General 
ase: ϕ : X −→ Y is a submersion. Write Y = ∪Vj and then X =

∪Ui su
h that ϕ(Uij ) ⊆ Vj . For any i, j su
h that ϕ(Ui) ⊆ Vj we 
an 
hoose

isomorphisms τi : Ui ≃ Fn and ψj : Vj ≃ Fm su
h that ψj ◦ ϕ ◦ τ
−1
i is the

natural proje
tion Fn −→ Fm. Hen
e

(
ψj ◦ ϕ ◦ τ

−1
i

)
∗
(µ∞c (Fn) ⊆ (µ∞c (Fm) and

ϕ∗(C
∞
c (Ui, DUi

) ⊆ C∞c (Vj , DVj
). By partition of unity, we 
an write φ =

∑
fidµi

where fidµi ∈ C∞c (Ui, DUi
) (this is a �nite sum as φ is 
ompa
tly supported).

Finally, observe that:

ϕ∗(φ) = ϕ∗(
∑

fidµi) =
∑

ϕ∗(fidµi) =
∑

gidµi.

Ea
h gidµi is a smooth distribution, so also the sum

∑
gidµi.

2) Sin
e ϕis a submersion then for any ϕ(x) = y ∈ Y ϕ−1(y) is a submanifold of X

and we have the following exa
t sequen
e:

0 −→ Txϕ
−1(y) −→ Tx(X) −→ Tϕ(x)(Y ) −→ 0.

Therefore Tx(X) = Txϕ
−1(y)⊕ Tϕ(x)(Y ) and hen
e also

0 −→ T ∗ϕ(x)(Y ) −→ T ∗x (X) −→ T ∗xϕ
−1(y) −→ 0.

This give rise to the following equality: (DX)x = (Dϕ−1(y))x ⊗ (DY )ϕ(x) by (ψ ⊗

τ) 7−→ φ. Pre
isely, we 
hoose basis v1, ..., vm of Txϕ
−1(y) and a 
omplement

basis vm+1, ..., vn su
h that dϕ(vm+1, ..., vn) is a basis of Tϕ(x)(Y ) . We now de�ne



GENERELIZED FUNCTIONS LECTURES 52

φ(v1 ∧ .... ∧ vn) := ψ((v1 ∧ .... ∧ vm) · τ(dϕ(vm+1 ∧ ....∧ vn). It 
an be 
he
ked that

the isomorphism doesn't depend on the 
hoi
e of the basis.

We �rst redu
e the problem to a small neighborhood, write Y = ∪Vj and then

X = ∪Ui su
h that ϕ(Uij ) ⊆ Vj . For any i, j su
h that ϕ(Ui) ⊆ Vj we 
an 
hoose

isomorphisms τi : Ui ≃ Fn and ψj : Vj ≃ Fm su
h that ψj ◦ ϕ ◦ τ
−1
i is the natural

proje
tion.

We need to prove that ϕ∗(f |ωX |)(h) = f |ωX | (h ◦ ϕ) = g · |ωY | (h) where g as in

the above formula. Constru
t partition of unity f =
∑
fi. Then it is enough to

prove the 
laim for fi |ωX | as then:

ϕ∗(f |ωX |)(h) = ϕ∗(
∑

fi |ωX |)(h) =
∑ ˆ

Y

gih |ωY |

where gi(y) =
´

ϕ−1(y)∩Ui
fi · η =

´

ϕ−1(y) fi · η. As g =
∑
gi we have that g(y) =

´

ϕ−1(y)
f · η as required.

The 
ase of proje
tion ϕ : Fn −→ Fm was solved at a). Hen
e it is enough to

redu
e to this 
ase. Using the fa
t that for di�eomorphism, pushforward is inverse

to pullba
k, we get:

ψj◦ϕ∗(fi |ωX |) = ψj◦ϕ◦τ
−1
i∗ ((τ−1i )∗ (fi |ωX |)) = ψj◦ϕ◦τ

−1
i∗ (fi◦τ

−1
i ·
∣∣(τ−1i )∗ωX

∣∣) = g̃i
∣∣(ψ−1j )∗ωY

∣∣

where g̃i(x) =
´

τi◦ϕ−1◦ψ−1

j
(x)
fi ◦ τ

−1
i

∣∣∣ (τ−1

i
)∗ωX

(ϕ◦τ−1

i
)∗ωY

∣∣∣. Denote gi := g̃i ◦ ψj . So g̃i =

gi ◦ ψ
−1
j . Hen
e ϕ∗(fi |ωX |) = gi |ωY |. Also

gi(y) = g̃i(ψj(y)) =

ˆ

τ−1

i
◦ϕ−1(y)

fi ◦ τ
−1
i

∣∣∣∣
(τ−1i )∗ωX

(ϕ ◦ τ−1i )∗ωY

∣∣∣∣ =
ˆ

ϕ−1(y)

fi

∣∣∣∣
ωX
ϕ∗ωY

∣∣∣∣ .

�

De�nition. By the proposition, the map ϕ∗ : C
∞
c (X,DX) −→ C∞c (Y,DY ) gives

a pullba
k ϕ∗ : C−∞(Y ) −→ C−∞(X).

Exer
ise. Let ϕ : X −→ Y be a submersion. We de�ned a pullba
k ϕ∗ :

C∞(Y ) −→ C∞(X) both by ϕ∗(f) = f ◦ ϕ and by �rst de�ning ϕ∗ : C−∞(Y ) −→

C−∞(X) via the de�nition for 
ompa
tly supported smooth measures, and then by

restri
ting to C∞(Y ). Show that the two de�nitions 
oin
ide.

We 
an also generalize the push and pull of fun
tions and distribution to bundles:

De�nition. 1) Let ϕ : X −→ Y and π : E −→ Y a bundle. De�ne ϕ∗(E) :=

{(x, e) ∈ X×E|ϕ(x) = π(e)} as a bundle over X with the natural proje
tion to X .

2) We 
an now de�ne pullba
k of se
tions ϕ∗ : C∞(Y,E) −→ C∞(X,ϕ∗(E)) and

pushforward of distributions ϕ∗ : Dist(X,ϕ
∗(E))prop −→ Dist(Y,E).
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3) Let ϕ : X −→ Y . De�ne ϕ!(E) := ϕ∗(E)⊗ ϕ∗(D∗Y )⊗DX .

Proposition. Let ϕ : X −→ Y be a submersion. Then ϕ∗ (C
∞
c (X,ϕ∗(E)⊗DX)) ⊆

C∞(Y,E ⊗DY ). In parti
ular, This implies that ϕ∗
(
C∞c (X,ϕ!(E))

)
⊆ C∞(Y,E).

Proof. As in the proof of the last proposition, we may redu
e to the 
ase where

ϕ : X −→ Y is the natural proje
tion, X = Fn, Y = Fm, E ≃ Fm × F k is trivial

and as a 
onsequen
e ϕ∗(E) = Fn×F k. We may do the redu
tion sin
e the notion

of �smoothness� of a distribution is lo
al. Let φ = fdµ ∈ C∞c (X,ϕ∗(E) ⊗ DX).

Then we have for any g ∈ C∞(Y,E),

〈ϕ∗(φ), g〉 = 〈φ, g◦ϕ〉 =

ˆ

X

f ·(g◦ϕ)dµX =

ˆ

Y

(
ˆ

X/Y

f · dµX/Y

)
·gdµY =

ˆ

Y

f̃ ·gdµY = 〈f̃dµY , g〉

so ϕ∗(φ) is smooth. �

9. Fourier transform

De�nition. Let G be a lo
ally 
ompa
t Hausdor� abelian group. De�ne its Pon-

tryagin dual by,

G∨ = {χ : G→ U1(C) = S1 ⊆ C|χ(g1g2) = χ(g1)χ(g2), χ is 
ts}

The topology on G∨ is the 
ompa
t open topology, i.e. a sub-basis for the topology

is 
omprised of sets M(K,V ) = {χ ∈ G∨ : χ(K) ⊆ V } where K ⊆ G is 
ompa
t

and V ⊆ S1
is open.

Theorem. 1) Let G be a lo
ally 
ompa
t, Hausdor� abelian group, then G∨ is a

lo
ally 
ompa
t Hausdor� abelian group.

2) Let G be a lo
ally 
ompa
t, Hausdor� abelian group. Show that if G is 
ompa
t

then G∨ is dis
rete, and that if G is dis
rete then G∨ is 
ompa
t.

Proof. At the tutorial session. �

Theorem. For a lo
ally 
ompa
t abelian group G, we have that that the natural

map ϕ : G −→ G∨∨ de�ned by g 7−→ ϕg, where ϕg(χ) = χ(g), is an isomorphism

G∨∨ ≃ G.

Proposition. Let G be a lo
ally 
ompa
t, Hausdor� abelian group, and H ≤ G a


losed subgroup. Then:

1) Pontryagin duality is a 
ontravariant endofun
tor in the 
ategory of lo
ally 
om-

pa
t abelian groups.
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2) Show that H∨ ≃ G∨/H⊥ where H⊥ = {χ ∈ G∨ : χ(h) = 1 ∀h ∈ H}, and that if

H and G are ve
tor spa
es then this is a homeomorphism.

Proof. At the tutorial session. �

Example. 1) For any �nite abelian group G we have that G ≃ Ĝ.

2) The dual of U1(C) = S1
is Z.

3) For G = R̂ ≃ R.

Exer
ise. Let V be a topologi
al ve
tor spa
e over a lo
al �eld F . Then V ∗ ⊗F

F∨ ≃ V ∨.

De�nition. Let G be a lo
ally 
ompa
t Hausdor� abelian group. The map F :

µc(G) −→ C(G∨) de�ned by F(µ)(χ) =
´

χdµ is 
alled Fourier transform.

Exer
ise. 1) F(µ) is 
ontinuous.

2) Let G be a lo
ally 
ompa
t abelian group. Show that for η ∈ µ∞c (G) and g ∈ G:

(a) F(shg(η))(χ) = χ(g)F(η)(χ) for all χ ∈ G∨.

(b) F(χη) = shχ−1(F(η)) for all χ ∈ G∨.

De�nition. Let X1, X2 be lo
ally 
ompa
t T.V.S and let µ1 ∈ µ∞c (X1),µ2 ∈

µ∞c (X2). We 
an de�ne the tensor produ
t of su
h measures µ1 ⊠ µ2 ∈ µ
∞
c (X1 ×

X2).In addition, If X1 = X2 = G, then we 
an also de�ne 
onvolution of measures

by µ1 ∗ µ2 := m∗(µ1 ⊠ µ2) where m : G×G −→ G.

Fa
t. F(α ∗ β) = F(α) · F(β).

De�nition. Let V be a f.d ve
tor spa
e over a lo
al �eld F . De�ne Schwartz functions

on V by:

1)S(V ) = C∞c (V ), i.e. lo
ally 
onstant fun
tions on V , in 
ase F is non-ar
himedean.

2) S(V ) = {f ∈ C∞(V )|∀i ∈ Nn, p ∈ F [V ], sup
∣∣∂if · p(x)

∣∣ <∞}, if F is ar
himedean.

In other words it is the spa
e of rapidly de
reasing smooth fun
tions on V .

Exer
ise. 1) Let F be a lo
al �eld, show that F(S(V ;Haar(V )) ⊆ S(V ∨). In

parti
ular, for the subspa
e µ∞c (V ) ⊂ S(V ;Haar(V ) we have that F(µ∞c (V )) ⊂

S(V ∨).

2) Give µ∞c (V ) the subspa
e topology of S(V ;Haar(V ) and S(V ∨) the natural

Fré
het topology. Show that F : µ∞c (V ) −→ S(V ∨) is 
ontinuous with respe
t to

these topologies.
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3) Show that µ∞c (V ) is dense in S(V ;Haar(V ) and that S(V ;Haar(V ) is 
omplete

and dedu
e that F : S(V ;Haar(V )) −→ S(V ∨) is 
ontinuous.

De�nition. 1) Let S(V ) be the spa
e of S
hwartz fun
tions on V . Then ξ ∈ S∗(V )

is 
alled thetempered distribution and ξ ∈ G(V ) := S∗(V,Haar(V )) is 
alled a

tempered generalized fun
tion.

2) Finally, we now 
an de�ne the Fourier transform on tempered distributions via

duality:

F̃ : S∗(V ∨)→ G(V ) := S∗(V,Haar(V )).

Choosing V := V ∨ we get F̃ : S∗(V )→ G(V ∨).

Theorem. The de�nition of Fourier transform of distributions is 
onsistent with

the de�nition for fun
tions. In other words F̃ |S(V ;Haar(V ) = F .

Proof. Let f(x) · dx ∈ S(V ;Haar(V )) and g(χ) · dχ ∈ S(V ∨;Haar(V ∨). Then by

de�nition,

〈F̃(f(x) · dx), g(χ) · dχ〉 := 〈f(x) · dx,F(g(χ)dχ)〉 =

ˆ

V

f(x)F(g(χ) · dχ)(x)dx

where F(g(χ) · dχ)(x) :=
´

V̂
χ(x)g(χ)dχ. Therefore we have:

ˆ

V

f(x)F(g(χ)·dχ)(x)dx =

ˆ

V

f(x)

ˆ

V̂

χ(x)g(χ)dχdx =

ˆ

V̂

(
ˆ

V

χ(x)f(x)dx

)
g(χ)dχ

=

ˆ

V̂

(F(f)(χ)) g(χ)dχ = 〈F(f(x) · dx), g(χ) · dχ〉.

�

In the following argument we would like to present the Fourier transform as a

unitary operator. For this we will �rst need to de�ne a pairing between Haar(V )

and Haar(V ∨). Given α ∈ Haar(V ) and β ∈ Haar(V ∨) we 
an de�ne su
h a

paring as follows. We 
hoose f ∈ C∞c (V ∨) su
h that f(0) = 1 and then de�ne

〈α, β〉 := 〈F(α), f · β〉.

Exer
ise. 1) This de�nition is well de�ned. That is, given some other g ∈ C∞c (V ∨)

su
h that g(0) = 1, show that 〈F(α), (f − g) · β〉 = 0.

2) Show that hV ∨ ≃can h
∗
V .

De�nition. We 
an now de�ne a map Fn : S∗(V, h⊗nV ) −→ S∗(V ∨, h
⊗(1−n)
V ∨ ) by

using the pairing hV ∨ ≃can h
∗
V and identifying S∗(V, h⊗nV ), S∗(V ∨, h

⊗(1−n)
V ∨ ) with

S∗(V )⊗h⊗−nV and S∗(V ∨, hV ∨)⊗(hV ∨)
⊗n

respe
tively. The identi�
ation between

S∗(V, h⊗nV ) and S∗(V )⊗ h⊗nV ∨ is as follows. Given ξ ⊗ β ∈ S∗(V )⊗ h⊗nV ∨ and f · α ∈
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S(V, h⊗nV ) we set ξ⊗β 7−→ ξβ where ξβ(fα) = ξ(f〈β, α〉). Under this notation, we

have that F0 : S∗(V ) −→ S∗(V ∨, hV ∨) is the Fourier transform.

Proposition. We have that F1 ◦ F0 = flip where flip(ξ)(f(x)µ) = ξ(f(−x)µ).

Proof. Note that span{δx} is a dense subspa
e of S∗(V ) in the weak topology.

Hen
e it is enough to show that F1 ◦ F0(δa) = δ−a. Note that F0(δ0)(fβ) :=

〈δ0,F0(fβ)〉 =
´

V ∨ fdβ. Hen
e F0(δ0) = 1.

Note that F1 : S∗(V ∨, hV ∨) −→ S∗(V ) is de�ned by identifying : S∗(V ∨, hV ∨) with

S∗(V ∨) ⊗ hV . Under this identi�
ation, 1 := (1 · µ1) ⊗ µ2where 1 · µ1 ∈ S
∗(V ∨),

µ2 ∈ hV and 〈µ1, µ2〉 = 1. Now given f ∈ S(V ), F1((1 · µ1) ⊗ µ2)(f) = F̃(1 ·

µ1)(fµ2) = f(0) so F1 ◦ F0(δ0) = δ0.

Noti
e that F0(Sha(δ0)) = χ(a) (as a fun
tion of χ) and F1(χ(a)). By 
ontinuity

of F0 and F1 this implies that F1 ◦ F0 = flip.(Need to �nish) �

De�nition. Let V be a ve
tor spa
e over F and let χ : F× −→ K× be a group

homomorphism. We 
an de�ne

χ(V ) := {ϕ : V ∗ −→ K×|ϕ(αf) = χ(α)ϕ(f)}.

Example. If χ = Square : F× −→ F× by χ(a) = a2, then Square(V ) := {ϕ :

V ∗ −→ K|ϕ(αf) = α2ϕ(f)}. Note that Square(V ) ≃can V ⊗ V if V is one

dimensional by v ⊗ w 7−→ ϕv · ϕw. Note that given ψ ∈ V
∗
we have ϕv · ϕw(ψ) =

ψ(v) · ψ(w) and ϕv · ϕw(aψ) = aψ(v) · aψ(w) = a2ϕv · ϕw(ψ).

De�nition. Let V be a one dimensional ve
tor spa
e over R.

1) A positive structure on V is a non trivial subset P ⊆ V su
h that R≥0 · P = P .

2) If V has a positive stru
ture, we 
an de�ne

V α := |V |
α
= {ϕ : V ∗ −→ R×|ϕ(βf) = |β|

α
· ϕ(f)}.

Exer
ise. 1) Let V/R be a 1-dimensional ve
tor spa
e with a positive stru
ture.

Show that:

(a) V ≃can |V |.

(b) V α+β ≃can V
α ⊗ V β where α, β ∈ Q×.

2) Dedu
e that hαV ⊗ h
β
V .
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De�nition. We now 
an �nally de�ne

Fα : S∗(V, hV ) −→ S∗(V ∨, h1−αV ∨ )

for α ∈ Q. In parti
ular, 
hoosing α = 1/2 we have:

F1/2 : S∗(V, h
1/2
V ) −→ S∗(V ∨, h

1/2
V ∨ )


