GENERELIZED FUNCTIONS LECTURES

1. LECTURE 1-THE SPACE OF GENERALIZED FUNCTIONS ON R™ AND
OPERATIONS ON THEM

1.1. Motivation. One of the basic examples for a generalized function is the
"Dirac Delta function". While it is not a function, §; can be described by d;(z) :=

oo x=t o 00
, and by satisfying the equality [ 6,(z)dz = 1. Notice that [ d0,(x)f(z)dz =
0 xz#t -0 —00

f(t) [ bi(x)dx = f(t). Here are several possible motivations to define generalized

functions:

e Every real function f : R — R can be established as a (ill-defined) sum of

1 z=t
N indicator functions f = > fi, where fi(x) := .
teR 0 z#t

e Sometimes the solution for a differential equation (or even just the deriva-
tive of a function) is not a function, but only a generalized function. Using
generalized functions, we can formulate solutions in such cases.

e In physics, Dirac Delta function can describe the density of a point mass.

1.2. Basic definitions. We denote by C2°(R) the space of smooth real functions

with compact support.

Definition. A generalized function is a continuous linear functional £ : C°(R) —
R. We sometimes use the notation (&, ¢) instead of £(¢).

To define what does “continuous” means we need to define a topology on C°(R).
This is equivalent to define what is a convergent sequence in C2°(R) (why? there
is something that need to be said here about uniform topology), and then ¢ is
continuous iff the image of a convergent sequence converges to the image of its
limit.

Definition. Given f € C°(R) and a sequence {f,, }nen with f, € C2°(R) for all
n, we say that {f,} converges in C°(R) to f if:

1) There exists a compact K C R for which Supp(f)U U Supp(fn) C K.

neN
1
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2) For every order k = 0,1,2..., the derivatives { fr(Lk)} converge uniformly to the
derivative f).

Recall a function f is locally — L', denoted f € L}, if the restriction to any

compact subset in its domain is an L' function. Given a real function f € L},
we'll define &5 : C2°(R) — R to be the generalized function &7(¢) :== [ f(x) -

¢(x)dx (notice the integral converges as it vanishes outside K, and f|x, ¢|x € L*).

These are sometimes called reqular generalized functions.

Exercise. For any f € L} 0, & is a well defined distribution.

The space of generalized real functions is denoted C~*°(R) := C°(R))*. Also, we
have that C(R) C L}, C C~°°(R), where the second inclusion is derived from
the embedding f — &;.

Exercise. Prove that there exists a function f € C2°(R) which isn’t the zero

function. Hint: Use function such as e=1/(1-2)"ag your building block.

Definition. We say the sequence {f,}nen converges weakly to f if for every F €

C(R) we have: lim [ F(z)- fo(z)de = [ F(z)- f(z)dz . Now we want to
n—>o0 s

take a completion with respect to this weak convergence, and for this we need the

notion of Cauchy sequence: A sequence {f,} is called a weakly Cauchy sequence if

Vg € C°(R), € > 03N such that Ym,n > N / (fn(z) = f(2)) g(x)dx < e.

— 00
Exercise. There is a natural isomorphism C2° (R)w ~ (C(R))" as vector spaces.

Definition. A sequence ¢, € C.(R) of continuous, compactly supported functions

is said to be an approzimation to the identity if the ¢,, are non-negative, have total
o0

mass [ ¢n(z) - de = 1 and for any fixed r, ¢, is supported on [—r,r] for n
—0o0

sufficiently large. One can generate such a sequence by starting with a single non-

negative continuous compactly supported function ¢; of total mass 1, and then

setting ¢, () = n¢1(nx). Many other constructions are possible also.

Notice that given n € C~>°(R) of the form 7 = &;, we can “recover” f completely
by applying (€7, ¢n(z +t)), and take the limit to get f(¢).
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1.3. Derivatives of generalized functions. Let f € C2°(R). We defined £;(¢) :=
[ f(z)- ¢(z)dx, and thus £ (¢) = [ f'(z) - #(x)dx. Using integration by parts

we'll get Ep(0) = f(x) - o) — T f(z) - ¢'(x)dx. However, since ¢ and f
has compact support, we know tha(o;(x) - d(x)|°, = 0. Thus, we’ll define
§(¢) = —¢&(¢)-

For example, the derivative of §y can be (badly) described as

00 r— 0~
do(x) =49 -0 z—0t
0 otherwise

This is a bad description, since we can’t evaluate generalized functions at specific
1

points (also it’s hard to describe §(/, 6" this way). When ¢ (x) is applied to some
¢ € C°(R), according to our definition we'll get §((¢) = —do(¢') = —¢'(0).

0 =<0

Exercise. Find a function F' € L} ;- for which F” = §. Hint: F(z) := .
1 >0

1.4. The support of generalized functions. We cannot evaluate a generalized
function at a point. Therefore, we cannot just define its support by Supp(§) =
{zr e R | &(z) #0}. However, if for some neighborhood U C R we have Vf €
C(U), &(f) =0, then evidently supp(§) C U°. In this case we’ll denote &|y = 0.

Notation: C2°(U) is the space of smooth functions f : U — R supported in some
compact subset of U. Given a compact subset K of some space X, we denote
C%2(X) the space of smooth functions f : X — R with supp(f) C K. In particular
CR(X) CCx(X) for every K C X,

As another example for a generalized function’s support: it’s reasonable to expect
Supp(d:) = {t}. So, we’d like to define Supp(€) to be the complement of the union
over all neighborhoods U C R such that Vf € C°(U),&(f) = 0. This definition is
well defined only if we solve the following exercise:

Exercise. Let Uy, Uy be open subsets of R. Show that:
1) if €|y, = €|y, = 0 then €|y, uu, = 0. Hint: Use partition of unity.

2) Show this also holds for any union of such compact {U;}ic;-
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Note that the support of ¢ is just {0} and yet, given some f € C(R) for which
f(0) =0, f(0) # 0, we'll have §)(f) = —do(f') = —f'(0) # 0. In other words,
having f(0) = 0 isn’t enough to get d( to vanish on f. We need f to vanish with

all its derivatives.

Exercise. 1) The support of 6 is {0} for any n.

2) Find all the generalized functions £ € C;*°(R) for which Supp(§) = {0}. Hint:

All the functions 56") for n € N and their (finite) linear combinations.
3) Supp(a&i +b&2) C Supp(&1) U Supp(&2).-

4) Supp(§) — Supp(§)° C Supp(£') € Supp(§).

1.5. Products and convolutions of generalized functions.

Definition. Let f € C°(R), & € Co*°(R). We'd like to have (f-&)(¢) = 70 &(x) -
f(z) - ¢(x)dz. Thus, we’ll define (f - &)(¢p) :=&(f - @).

Actually, even though we can multiply every such f and &, the product of two gen-
eralized functions will not always be defined. Notice that indeed in some topologies

the product of two Cauchy sequences isn’t always a Cauchy sequence.

Recall that given two functions f, g, their convolution is the function (f * g)(z) :=
[ f(t)-g(x—t)dt. The convolution of two smooth functions will always be smooth.

o0
In addition, if f, g have compact support, than so will f*g .

Exercise. Supp(f * g) is the Minkowski sum of Suppf and Suppg. Therefore
fyg € C(R) implies f* g € C(R).

Given f,g € C°(R) we can write (f % g)(x) = (), where g,(t) := g(x —t). This
gives the motivation to define the convolution & * g to be the function (£ * g)(z) =
&(gz) (notice: the convolution between a function and a generalized function is a

function- not a generalized function).

Exercise. Show that for ¢ € C°(R) we get that £ * ¢ is a smooth function.

Next is the definition for convolution of two generalized functions. We won’t define

it for every couple of generalized functions -only for those with compact support,
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or more precisely, when at least one of the generalized functions have compact
support. For ¢, &, € C7°(R) we’d like to have:

oo

G = [ (Fro / / ) - g — ) - bla)dde

T=—00 T=—00t=—00

Rearranging the expression and replacing the order of integration gives:

(6 % €,)(@) = / £t / oz — ) - dla)dadt

t=—o0 T=—00
In a "usual" convolution, the arguments of the multiplied functions in the integral

sum up to the convolution’s argument (e.g., (f * f f(t) - g(x —t)dt, and

r=t+ (z—1t)). In our case, we denote ¢(z) := ¢(—zx), and write:

/f / gla — 1) - B(—a)dwdt = /f (€ * B)—t)dt = £, + 9)

t=—o0 T=—00 t=—o0

Definition. We define(¢f % £,)(¢) := £7((&y * 9)).

However, some formal justification is required. Given a compact K C R, we’ll say
pis a cutoff function of K if p|x = 1,ply =0, when V C R\ K.

Exercise. Let K,V as above. Show that there always exists a smooth cutoff

function. Hint: use Urison’s Lemma.

Thus, given some & € C°°(R) with Supp(§) C K we will have £(¢) = {(px - @).
This enables us to define £ as a functional over all C*°(R) and not only on C2°(R)).
For every ¢ € C*°(R) we define {(¢) = {(px - ¢) with K := supp(§) C R.

Exercise. 1) Show that (£ xn) =& xn =& «n'. Hint: First show that § xn =7,
and that ¢’ x 7 =n'. Then show we have associativity: ¢’ x (£ xn) = (&' * &) x 1.

2) In an exercise above we showed: if ¢ € C2°(R) then the convolution & * ¢ is
smooth. Show that if ¢ is smooth, and Supp(&) is compact, then & *x ¢ will still be
smooth.

1.6. Generalized functions and differential operators. A differential equa-
tion can be described by the equality " Af = ¢”, where A is a differential operator.
Let’s try to solve such an equation, when we assume A is a linear differential op-
erator, and is invariant under translations (i.e., we’ll have Af = Af, where ¢ is

any fixed translation of ¢). An example for such operator is a differential operators
with fixed coefficients (e.g., Af := f” +5f" +6f).
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A simple case is finding G for which the equation AG = g holds. Given such G, and
using A’s invariance under translations, we get that AG,, = ., for G (t) := G(t—=zx).
We can use the exercise above to show that A(f*h) = (Af)*h for any two functions
fsh and then deduce thatA(G x g) = AG * g = dp x g = g. Hence, we can find a
general solution f for Af = g by solving only one simpler case AG = dg. The

solution G is called Green’s function of the operator.

Exercise. 1) Let A be a differential operator with fixed coefficients. Choose any
solution for the equation AG = Jy, and describe the conditions G have to meet

without using generalized functions.

2) Without using generalized functions, please explain the equation A(G x g) = g

we got for the solution G.

3) Solve the equation Af = §y (where A is the Laplacian operator).

1.7. Regularization of generalized functions.

Definition. Let {&)}xec be a family of generalized functions. We say the family
is analytic if (£y, f) is analytic (as function of A € R) for every f € C°(R).

2> >0

Example. We denote xi = , and define the family by &, := azi The
0 <0

behavior of the function changes as A changes: When Re(\) > 0 we’ll have a nice
continuous function; If Re(\) = 0 We'll get a step function and for Re()) € (—1,0),
2 will not be bounded. We’d like to extend the definition analytically for Re(\) <
—1.

A derivation of 2} (both as a complex function or as defined for a generalized
function) gives &, = X - & —1. This is a functional equation, that enables us to
define &, = %, and thus extend &, to every A € C. This extension isn’t
analytic, but is meromorphic: it has a pole in A = 0, and by the extension formula,
inA\=-1,-2,....

This is an example for a meromorphic family of generalized functions. Let’s give a
formal definition. Our {€)} ec has a set of poles {\,,} (poles are always discrete),
whose respective orders are denoted {d,}. The family will be called meromorphic
if every pole \; has a neighborhood U;, such that (&), f) is analytic for every
feCX(R) and A\; # X € U;.

Exercise. For the above example &) := :Ei, find the order and the leading coeffi-

cient for every pole.
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Example. For a given p € Clzy,...7,,], we denote similarly p(z1,..z,)" =

p(xy,..2n) >0 . . . .
. The problem of finding the meromorphic continuation for
0 x <0
a general polynomial was open for a while. It was solved by Bernstein by defining
a differential operator Dpﬁ‘r = b(\) - pi‘l, where b(\) was a polynomial pointing

on the location of the poles.

Exercise. 1) Solve the problem of finding an analytic continuation for py (21, ...x,,)*

in the case p(z,y,2) =22+ y? + 22 — a.

2) Solve the problem of finding an analytic continuation for p, (x1,...z,,)" in the

case p(x,y,2) = 2% +y? — 22
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2. LECTURE 2- TOPOLOGICAL PROPERTIES OF CS°(R™)

We want to analyze the space of distributions C~°°(R"™) and to define a topology

on it. For this we use facts from topological vector spaces.

2.1. Topological vector spaces.

Definition. A topological vector space (or linear topological space) is a linear space
with a topology, s.t. multiplication by scalar and vectors addition is continuous.

More precisely: there exists continuous operations:
H+:VxV—V

2) -: FxV — V, where F is some topological field such that V is a vector space

over it.

This demand limits the topology we can have. For example, giving the space
discrete topology will force a discrete topology on the field.

Since addition of points is continuous, translation is also continuous. This makes
all the points in the space "similar" and therefore the open sets of every point z
are the same as those around 0. This property is called homogeneity. We’re mainly
interested in "nice" topological vector spaces. Specifically: We assume all the
topological vector spaces are Hausdorff. Note that for a non Hausdorff space
V we can quotient by the closure of {0} and get a Hausdorff space. This will make
sense by the following exercise.

Definition. Let V be a topological vector space over F.

1) We say that a set A C V is convex if for every a,b € A the linear combination
ta+ (1 —1t)b € A where t € [0,1].

2) We say that V is locally convez if it has a basis of its topology which consists of

convex sets.

3) For every open convex set 0 € C' in V we set for any 2 € V: No(z) = inf{a €
RZO : % S C}

4) We say that a set W C V is balanced if \A\W C W for all |A| <1 where A € F.

Note that a convex set C' is balanced iff it is symmetric (C' = —C).
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Exercise. 1) Find a topological vector space which is not locally convex (not

necessarily of finite dimension.

2) Show that any finite dimensional Hausdorff locally convex space is isomorphic
to F™. This is also true for linear topological spaces that are not locally convex,
but the proof is harder.

3) Let V be a locally convex linear topological space. Prove that V is Hausdorff iff
{0} is a closed set.

Remark. From the homogeneity of V', {0} is a closed set iff Vo € V{x} is a closed set.
The exercise shows a locally convex linear topological space satisfies the separation

axiom T4 iff it satisfies T5.
Exercise. Let 0 € C be an open convex set in a topological vector space V .
1) Show that N¢(z) < oo for allr € V.

2) Show that if furthermore C' is balanced then N¢(z) is a semi-norm.

In a locally convex space we have a basis to the topology consisting of convex sets.
We can assume all the sets are symmetric: First notice it’s enough to show this for
open sets around 0 (from homogeneity of the space). Then, given any open convex
neighborhood A of 0, we know A N —A is a (non-empty) symmetric convex open
subset of it. Therefore we have a basis for our topology consisting of symmetric

convex sets.

However, there is a bijection between semi-norms on the space and symmetric
convex sets. Given a semi-norm N on V, the bijection maps N to its unit ball
{z € V|N(z) < 1} (it’s symmetric by absolute homogeneity and convex by the
triangle inequality). Note he semi-norm N¢ (2) we defined isn’t a norm. Specifically,
if C contains the subspace span{v}, we’ll get ne(v) = 0 (even though v # 0).
However, given the basis T for our topology, we can not get nc(v) = 0 for all
the sets C' € T. Since in this case we’d have span{v} C (| C, contradicting the
Hausdorff assumption. ot

Definition. A set C' C V is absorbent Vx € V 3\ : ¥ € C. i.e., multiplying C
by a big enough scalar can reach every point in the space. For absorbent C C V'
we’ll have Ne(v) < oo for all v € V directly from definition. Every open set is

absorbent, and thus we can define our norm for all the sets in the basis.

Example. The segment {(x,0) |z € [0,1]} in R? isn’t absorbent, and for y = (1,0)
we get no(y) = oo.



GENERELIZED FUNCTIONS LECTURES 10

Exercise. 1) Find a locally convex topological vector space V' such that V has no

continuous norm on it. That is, every convex open set C' contains a line span{v},
so N¢(v) = 0.

2) Find a non locally convex space.

In conclusion, a locally convex space possess a basis to the topology consists of col-
lection of sets that defines a system of semi-norms. Some authors use this statement

as the definition of locally convex space.

2.2. Defining completeness. In a metric space, a point belongs to the closure
of a given set if and only if it is the limit of some sequence of points belonging to
that set. The convergence of the sequence (a,)nen to the point x is defined by the
requirement that for any ¢ > 0 there is N € N such that d(a,,z) < ¢ whenever
n > N. This is equivalent to the requirement that for any neighborhood U of z
there is some N € N such that a,, belongs to U whenevern > N.

For a general topological vector space V, even though we don’t have a metric on

V', we can define Cauchy series:

Definition. A series {z,} C V is called a Cauchy series, if for every neighborhood

U of 0 € V there is an index ng € N such that m,n > ng implies x,, — x,, € U.

Remark. More generally, if X has a uniform topology, then we can define a notion
of a Cauchy sequence. We will not give the definition of a uniform topology, but we
mark that any topological group possess a uniform topology, and indeed one can
define a notion of a left (resp. right) Cauchy sequence as follows: {z,} is a Cauchy
sequence if for every neighborhood U of e € G there is an index ng € N such that

m,n > ng implies z,.'x, € U (resp. z,x,,! € U).

Definition. 1) A topological vector space is called sequentially complete if every

Cauchy sequence in it converges.

2) A subset Y C X is called sequencialy closed if every Cauchy sequence {y,} € Y

converges to a point y € Y.

The next example shows that we can have closed sets Y that are sequentially closed
but not closed. This example also shows that if the topology is too strong ( not

first countable) then the notion of Cauchy sequence is not the “right notion”.
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Example. Let X be the real interval [0, 1] and let 7 be the co-countable topology
on X; that is, 7 consists of X and () together with all those subsets U of X whose
complement U® is a countable set. Let A = [0,1), and consider A. Now, {1} ¢ 7
because X \ {1} = [0, 1) is not countable. It follows that A is not closed. However,
A is closed and contains A so A = [0, 1]. Since 1 is not an element of A, it must be
a limit point of A. Suppose that (a,)nen is any sequence in A. Let B = {aq, a2, ...}
and let U = B®. Then 1 € U and since B is countable, it follows that U is an
open neighborhood of 1 which contains no member of the sequence (an)ney - It
follows that no sequence in A can converge to the limit point 1. This argument can
be applied to show that A has no Cauchy sequences, so it is (trivially) sequentially

closed but not closed.

Definition. 1) An embedding i : V < W is called a strict embedding it i : V —
1(V') is an isomorphism of topological vector spaces.

2) A space V is called complete if for every strict embedding ¢ : V' — W, the image
o(V) is closed.

Remark. * Equivalently, we can define that a space V' is complete if any Cauchy
net is convergent. By this definition it can be easily seen that any compete space

X is also sequentially complete.

* In the category of first countable topological vector spaces, completeness is equiva-
lent to sequentially completeness, and indeed the notion of Cauchy nets is equivalent

to Cauchy sequence, and a set Y C X is closed iff it is sequentially closed.

Exercise. Find a sequentially complete space which is not complete. Hint: See

example.

Definition. 1) A space V will be called a completion of V if V is complete and
there is a strict embedding i : V' — V, where i(V) is dense in V.

2) A different definition can be made using a universal property: A (strict?)

embedding i : V — V is a completion of V if:
(a) V is complete.

(b) For every map v : V. — W where W is complete, there is a unique map
éw : V — W, such that ¢ = ¢y 0i.”

Exercise. (*) Show that these two definitions of completeness are equivalent.



GENERELIZED FUNCTIONS LECTURES 12

This definition of completion, using the desired property saves us dealing with
Cauchy nets or filters. However, one has to use them to show that such completion

exists:

Exercise. 1) (*) Show that every linear topological Hausdorff space has a comple-

tion.

2) Show that in the category of first countable topological vector spaces def1 <=
def2 <= seq.comp.

2.3. Fréchet spaces. Reminder: A Banach space is a normed space, which is
complete with respect to its norm. A Hilbert space is a inner product space, which

is complete with respect to its inner product.

Theorem. (Hahn-Banach) Let V' be a normed TVS, W CV a linear subspace and
f: W — R a continuous functional such that |f(x)| < C - ||z|, then there exists
f:V — R such that flw = f and ‘f(x)‘ <C |-

Exercise. Let W C V be locally convex topological vector spaces, and set V'V and
WY to be the continuous duals of V' and W respectively, and let (%) denote the

usual dual.

(a) Show that the restriction map V* — W* is onto.

(b) Show that the restriction map V'V — WV is onto.

Every normed space is (Hausdorff and) locally convex, since the open balls in the
space are convex, and they give a basis for the topology. We also know that every

normed space is metric. However, metrizability doesn’t force local convexity and

vice versa.

Definition: A Fréchet space is a locally convex complete metrizable space.

Exercise. 1) Show that for a locally convex topological vector space V' the following

three conditions are equivalent, thus each implying that V' is a Fréchet space.
(a) V is metrizable.
(b) V is first countable.

(c) There is a countable collection of semi-norms {n;};cn that defines the basis for

the topology over V', i.e, U; . = {x € VIn;(x) < €} is a basis for the topology.

2) Let V' be a locally convex metrizable space. Prove V' is complete (and it’s a

Fréchet space) iff it’s sequentially complete.
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Recall that a completion of a space using a norm is the quotient space of Cauchy
sequences under the equivalence relation {z,} ~ {y,} <= Jgngo||xn —ynl|l = 0.
A completion of a space using a norm results in a Banach space. A completion of
V' using some semi-norm n will eliminate all the elements {z € V' |n(z) = 0}, and
will define a norm on the quotient, again resulting in a Banach space. For example,
the completion of the space of step functions on R, with respect to the semi-norm
[ fllx := [ |f(2)|dz gives the Banach space L'(R).

Let V be a Fréchet space. In this case we have a sequence of semi-norms, n; on V.

We can order them by replacing n; with njzg;r{nj} Denote V; the completion of V
with respect to n;. If two norms n;,n; satisty Vo € V,n;(x) > n;(x), we get an
inclusion (that is continuous) V; — V;. A sequence of ascending norms n; < ng < ...
will thus give rise to a descending chain of completions V; <= V5 <= V3.... Our
space V will be defined as the inverse limit V' = limV; which in this case has a
very nice description: it is the intersection V = ) 1</1-_0f these Banach spaces (with
the subspace topology?). If n;,n; are semi—no;renl\; we only get a continuous map
Vi < Vj(every converging sequence is mapped to a converging sequence). In this
case V will be the inverse limit l@% where the topology on V is generated by all
the sets of the form goi_l(Ui) where U; is an open set in V; and ¢; : V = l(iﬂﬂ/i —V;

is the natural map (it is part of the data of limV}).
—

Example. 1) Let V := C>°(S') is a Fréchet space. Define the norms {n;};en by
£

C*(S'). This family satisfy Vo € V,n;(z) > n;j(x) so by the argument above we

indeed have C>(S') = () C*(S1).
keN

n = Maw sug{}f(j) (z)|}. The completion with respect to niy will be Vi =
St ze

2) V = C*°(R) is a Fréchet space. Define ng, ,, by | flln: := max sup {|f9 ()|}
J<i zeK;
where K; = [—i,4]. Notice that this gives an ascending chain of seminorms so this
defines a Fréchet space V' = limV;. A similar argument can show C*(R") is a
—
Fréchet space, and actually also C°°(M) for a manifold M. In these cases we’ll
take the supremum over all the possible derivatives.

Definition. The direct limit of an ascending sequence of vector spaces is the space

Voo := U V. This is not a Fréchet space, but a locally convex topological vector
neN
space. A convex subset U C V., will be open iff UV}, is open in V;,, for all n.

Every space C*°(K) has the induced topology from C°°(R). Taking the union of
the ascending chain C*°([—1,1]) C C*°([-2,2]) C ... will give all smooth functions

with compact support C2°(R) = limC>([—n, n]) as a direct limit. However, this is
n
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not a Fréchet space (it’s a direct limit and not an inverse limit). A basic open set
will be

Ulenkn) = Z{f € C*(R) [ Supp(f) € [-n,n], flkn) < €n}
neN

, where the 3 denotes the Minkowski sum, that is A+ B := {a + bla € A,b € B}.

Exercise. Show that f, € C°(R) converge to f with respect to the topology

defined above if and only if it converges as was defined in the first lecture, i.e,
(a) There is a compact set K C R s.t. supp(f) U supp(frn) C K.
(b) For every k € N the derivatives f,(lk) () converge uniformly to f* (z).

Remark. Notice that the topology on CS°(R) is complicated- it is a direct limit of

an inverse limit of Banach spaces!

Exercise. Show that taking a convex hull instead of a Minkowski sum (i.e., defining
Ule, k) = convnentf € C®(R) | Supp(f) C [-n,n], f¥n) < €,}) will result in the
same topology. This shows that C°(R) is a locally convex TVS (although by the
definition as a direct limit of Fréchet spaces it is clearly a LCTVS).

Finally, Fréchet spaces have several more nice properties:

e Every surjective map ¢ : V4 — Vs between Fréchet spaces is an open map
(it’s actually enough that V5 is a Fréchet space and V; is complete).

e Defining K := ker¢, it can be shown that the quotient V1 /g is a Fréchet
space, and factor ¢ to the composition Vi — Vi/p — Va. The map
Vi/ g — Vo will be an isomorphism.

e In addition, every closed map ¢ : Vi3 — V4 between Fréchet spaces can be
similarly decomposed. First by showing I'm(¢) is a Fréchet space, and then
decomposing Vi — Im(¢) — Va.

2.4. Sequence spaces. As an example for Fréchet spaces we’ll analyze sequence

spaces. Reminder: [? is the space of all sequences {z,},en over R, such that

o0
> Jan|? < co. It is a Banach space. For p = 2, it is also a Hilbert space.
n=1

Let SW(N) be the space of all the sequences which decays to zero faster than any
polynomial, i.e., Vn € N, liém x; -¢" = 0. One norm over such sequences can be
11— 00
[{zit|n = sup{|x; - i"|} = || - i"||j. In that norm we can easily see that every
ieN
Cauchy sequence converges. Define the topology on SW(N) by the family of norms

[[{zi}||» and this defines a Fréchet space. Thus, this is an example for a Fréchet
space which is not a Banach space.
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QUESTION: How can we see every Cauchy sequence converges? Why isn’t it a

Banach space?

The dual space V* will be {{x;},c | 3n,c: x; < c-i"}. Thisis a union of Banach
spaces, as opposed to the intersection we had when defining the completion of a
Fréchet space (we’ll talk about the dual space more next lecture). Note that both
V and V* contain the subspace of all sequences with compact support - only finite

number of non-zero elements.
QUESTION: Why is V* the dual of V7

Actually, every separable space can be established as a sequence space. The el-
ements of the space will correspond to infinite sequences. The elements in the
countable dense subset of the space will correspond to the sequences with compact

support.

Smooth functions on the unit circle, C°°(S?), correspond to sequences {x;}ien
decaying faster than all polynomials. More precisely, we can view f € C°°(S!) as
a periodic function in ngriodic(R) which can be written as f(z) = > a, - ™. So

we attach f — a, and a, decays faster then any polynomial.

Exercise. 1) Show that the Fourier transform F : C*°(S') — SW(Z) by f —
an is an isomorphism of Fréchet spaces, that is, show that for any seminorm P;
of SW(Z), there exists seminorm S; of C*°(S§') and C' € R such that for any
fFeC=(SY), NIFHllp, <C-lIflls,-

2) Define a Fréchet topology on S(R) = {f € C**(R)| lim f () - 2% — OVE}.
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3. LECTURE 3- C~°°(R"™)- TOPOLOGY AND FILTRATIONS.

3.1. Topologies of the space of distributions.
Remark. Let U C R™ be an open set. Then we can defineC=>(U) := (C(U))*.

Definition. 1) Let V be topological vector space. A subset B C V is called bounded
if for every open U C V exists A such that B C A -U. When the topology on V'
is given by a sequence of norms, B will bounded iff it is bounded with respect to

every one of the norms.

2) Denote V* = {f:V — R : f is linear and continuous}. There are many topolo-
gies we can define on V*, but we will consider only two topologies. V* with the
weak topology will be denoted Vi3, and with and strong one V. Given € > 0 and
S CV denote Ueg ={f € V*:Vax €S, f(x) <e}. The topology on V} is induced
by the basis:

B:={Uc.s:e>0, |S| < oo},

while the topology on Vg is induced by the basis:
B:={U.s:e>0, S is bounded}.

In particular, every open set in Vjj, is open in V3.

By definition, a sequence { f,,} C V* converges to f € V* iff for every U, g € B there
exists N € Ns.t. (f, — f) € Ues for n > N. That is, Vo € S, f.(x) — f(x) < e.
Therefore {f,,} converges to f under the weak topology iff it converges point-wise,
and it converges under the strong topology iff it converges uniformly on every
bounded set.

Example: Let V = R. Let 1) be a bump function. Notice that g,(x) = ¥(z) + n
converges pointwise to 0 (and hence also weakly). g, doesn’t converges uniformly
to 0, but it does converges uniformly on bounded sets to 0 so it strongly converges
to 0.

Assume V is a Fréchet space. Recall that we can defineV as a inverse limit of
Banach spaces V. = (] V; where V; is the completion of V' with respect to an
ieN
increasing sequence of semi-norms n;. If we dualize the sequence {V;} we get an
increasing sequence Vi* C V" C ... C V¢ = limV;*, and we get that V¢ is a direct
—

limit of Banach spaces (as a topological vector space).

Exercise. Consider the embedding C°(R) < C'~>°(R), defined by f — &;. Show
that:
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1) This embedding is dense with respect to the weak topology on C~>°(R).
2) This embedding is dense with respect to the strong topology on C~>°(R).
3) C~°°(R),, is not complete but it is sequentially complete.

4) C=>(R),, = C>(R)#- the dual space (as a linear space).

5) C=*(R)s = C~°(R)g - complete.

3.2. Sheaf of distributions.

Definition. Let U; C U C R™ be open sets. Every function f € C°(U;) can
be extended to a function f € C°(Uy) by defining f |\, = 0, hence we have
an embedding C°(U;) < C°(Uz). This embedding defines a restriction map
C™>(Uz) = C*(Us), mapping & = & |u,, with € [v;, (f) = £(F).

Remark. For an open U C R™, the topology on C2° (U) is generally not the induced
topology from C2°(R™) under the embedding C°(U) < C°(R™). For every com-
pact K C U, we have C%¢ (U) C C2° (U). Here the topology on C% (U) is indeed
the induced topology from C2° (U).

We will prove next that with respect to the restriction of distributions defined
above, the distributions form a sheaf.

Lemma: Let f € C* (U), U = |J U;. Then f can be written as a sum f =Y f;
icl iel
where f; € C2°(U;). Moreover, for every x € U, the number of sets |[{i € I : f;(x) #

0}| will be finite.

Proof. We can assume that U; are balls (otherwise, replace each U; by the balls
covering it). Denote K := supp(f). It is a compact set covered by open balls,

n n
so there exists a finite sub-cover: K C |JU; = | B (x;,r;). Since the cover is
; i=1

=1
n
open and K is closed, there exists € > 0 such that K C |J B (x;,r; —€). Let p; be
i=1
smooth step functions satisfying pi|p(a, r,—e) = 1, pilB(zs,r)c = 0. Since Vz € K,
Sory pi(x) # 0, we can define:

pi-f
b= s T eK

0 r¢ K
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Theorem. With respect to the restriction map defined above, the distributions form

a sheaf, that is, given an open U C R™, and open cover U = |J U;, we have:
i€l

1) (Identity axiom) Let & € C~>°(U). If Vi, &

u, =0, then &|y = 0.

2) (Glueability aziom) Given a collection {&; }icr, & € C~°°(U;) that agree on in-
tersections (i.e. Vi,j € I, &lu,nu, = &jluinu, ), there exists £ € C~°°(U), satisfying
Elu, =& for any i.

Proof. 1) Given f € C°(U) we need to show £(f) = 0. Indeed, by the lemma
f=ht e fu, with f; € C2(Us). Hence £(f) = &(X fi) = ;ﬁ(fi) =0.

i=1

2) We first use the fact that there exists a partition of unity, that is, 1 = Y \;(x)
where supp(\;) C U; and the sum is finite for any = € U an also that for any
compact K C U we have that A\;|x = 0 for all but finitely many #’s. Now fix some
partition of unity {A;} and let § € C~°°(U;). Define £(f) := > ,c; &i(Aif). Note
that f is supported in some compact K so the sum is finite, so this is well defined.
It is clear that & is linear. We need to prove that it is continuous, and that £|y, = &:

Let f,, = f € C(U). Then also A; - f, = A; - [ as the multiplication (f,g) —
f - g is continuous. As suppf, U Suppf C K for some K C U, we have that
fAi = 0 for all but finitely many i’s so we can write (f) :== > i, &(A\if) and
E(fn) == D11 &(Nifn) for any n. By the continuity of &, &(Ni - fn) = &N - f)
and therefore &(fn) = >, & (N - fn) = >, &N - f) = &€(f) so € continuous. Now
let f € C(Uj), then

&f) = Z@-(Aif) = Z_@(AJ) = @(Z Xif) = &(f)

where the second equality follows from the fact that A\,f € C>(U; NU;) and

ilvinu, = &luinu, -

There is also a second proof for the continuity of £ is working with the open sets
in the topology of C2°(U): As &; are continuous, they are bounded in some convex
open set B; of 0, so &;(B;) < e. Notice that Conv(UB;) is open in @, ; C(U;)
(where each B; is an open set in C°(U;) and hence a set in @, ; C°(U;)), as
Conv(UB;) N C°(U;) = B;. Notice that ¢(Conv(UB;)) is open. Now let f €
o(Conv(UB;)). We can write f = 22:1 a;f; where f; € Bj;, and > a; = 0.
Therefore £(f) := > &i(aifi) <Y a;-e¢= e and & is bounded on B. O



GENERELIZED FUNCTIONS LECTURES 19

3.3. Filtration on a space of distributions.

Exercise. V :=C>® (U) = {f € C* (R") : Vz ¢ U, V differential operator L, Lf(x) = 0}.
Consider U = R™ ~. RF. We wish to describe the space of distributions supported
in R*, denoted Cp,>°(R™). Notice that:
Cri”(R") ={£ € C"(R")|Vf € CF(R" \ R") it holds that £(f) = 0}
and by continuity this equals
= {6 e C"=([R")|Vf € Cz°(R"/R¥) it holds that {(f) = 0} = {¢[¢lv = 0}

Notice that we can define a natural descending filtration on V' by:

%

0
Vv, = {f c CSO(RRHVZ c Nn_k where |’L| < m it holds that (8 '];1 |]Rk = O}
X

We see immediately that f € V,,,(C°(R™)) implies f € V,,—1(C°(R™)), hence
this is a descending chain. Accordingly, we can define a ascending filtration on
Cp” (R™) by:

Fon(Cp®(R™) =V, ={§ € Cp(R") : &lv,,, = 0} C CRp(R™).
Exercise. 1) NV, =V = 0 (R™ \ R¥).
2) UE, # O (B

3) Let U C R™ be open and U compact. Show that for every & € Cg2 (R™)* there
exists £’ € Fy, such that &|y = &'|y, thus ;2 F; covers Cg2 (R™)* locally.

4) Consider a smooth function ¢ : R® — R" that fixes R*. Show that changing
coordinates using ¢ for £ € F; we get a distribution in F; (so F; is preserved under
change of coordinates: ¢*(F;) = F; , meaning: V¢ € F;, {(p(f)) € F).

9'(C—>(RY))

(@) as vector spaces.

Theorem. F,, ~ @jenn—k |ij<m

Proof. 1) We will prove for m = 0. Let £ € C~°(R¥), we can assign ¢ : £ — feR

by &(f) = flrr. Notice that £(f) = 0 for any f € Fj so it is well defined. It is
clear that it is injective as if £(f) = 0 for all f € C2°(R™) then &(f|gr) = 0 for any
f but any map g € C2°(R*) can be extended to g such that g|gs = g. It is left to
prove surjectivity and we are done. Let n € Fy. Assign n — 7 € C~°(R¥) by

n(f) = n(f) where fsatisfy ﬂRk =f.

Notice that 77 is well defined as if f,§ satisfy ﬂRk = glgr = f then n(g) = 17(]7)
Also 77 is continuous as if f,, — f then we can choose lifts such that }; e fand
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as 7 is continuous it follows. We got that ¢(77) = n so ¢ is surjective and we are
done. Now for m > 0 this is a generalization to the exercise that any distribution
supported on 0 is a combination of derivatives of §, and it will be proved in lecture
5. O

We can define G, = @ieankJi‘:mW and hence G,,, ~ F,,, /Fp—1.

Exercise. Show that this decomposition is not invariant under change of coordi-
nates, that is ©(Gy) # Gm, ¢(G(i)) # Gy where (i) is a multi-index.
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4. LECTURE 4 - P ADIC NUMBERS AND L SPACES

We want to find integer solution for an equation of the form of an integer valued

polynomial p(X) = 0. If there exists such a solution X, then it must satisfies

the same equation modulo some prime p and also modulo p™ for any 1 < n € N.

Therefore we want to define some “creature” denoted Z,, such that having a solution

in Z, is the same as having a solution modp™ for any n. For this we will need to

define the p-adic numbers.

4.1. Defining p-adic numbers.

Definition. 1) A topological field is a field F, together with a topology, such that
addition, multiplication and the multiplicative and additive inverses are continuous

operations.

2) Given a field F, an absolute value is a function | | : F — RT that satisfies:
* The triangle inequality : |z 4+ y| < |z| + |y|-

*|2llyl = |yl

*z)=0< 2z =0.

For topological field we demand the absolute value to be continuous map. Notice
that every absolute value satisfies |1| = 1 (as |[1| = |1] - |1, and |1| # 0).

0 =0
Example. 1) The trivial absolute value, defined by: |z|q :=
x#£0

2) The standard absolute value on R, which we’ll denote | |-

Now if we want to solve the equation f(X) = 0 modulo p™ we want p" to be zero.
Therefore, when we define the p-adic norm we want ||p"|| to be “very small” as n

grows.

Definition. For any given integer a we define the ord,a to be the highest power
m of p such that p™|a. For z = a/b € Q we define ord,xz = ord,a — ordyb. Define
the p — adicnorm by ||z, =0if 2 = 0 and ||z[|, = 1/p°rd»® otherwise.

Proposition. The map | |, defined above gives an absolute value on Q.
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Proof. ||a/b||, = 0 then either a/b =0 or ord,a = oo and therefore a/b = 0. Note
that:

C

d

ac

bd

p_p

1 B 1 1 ja
ord,(ac)—ordy(bd) pordp(a)—ordp(b) ' pordp(c)—ordp(d) - HE

|

and also that triangle inequality holds:

p p

ad + be
bd

p

H% + 2 _ 1/(pordp(ad—i-bc)—ordp(bd)) < 1/(pmin(ordp(ad),rdp(bc))—ordp(b)—ordp(d))

1/(pmin(ordp(a)-l-ordp(d),ordp(b)-l-ordp(c))—ordp(b)—ordp(d)) _ 1/(pmin(ordp(a)—ordp(b),ordp(c)—ordp(d)))

1/(pmin(ordp(w),ordp(y))) — max(H%}

aly =[50, + 13,

)

P
]

Definition. A norm is called non archimedean if |z + y|| < max(||z| , ||y||) always
holds. In particular, if ||z[| # [ly|| = [z + yl| = max(|[[z],[|y]). Note that by the

last proposition,|| ||, is non archimedean.

2) Two norms | |,| | on F are called equivalent (denoted | | ~ | |') if for any
{an} € Q, a, is a Cauchy sequence with respect to | | iff it is a Cauchy sequence

with respect to | |.

Theorem. (Ostrowski Theorem) Every non-trivial norm || |[on Q is equivalent to

[, for some p, or the usual norm on Q induced from R, denoted |||

Proof. Case (i): There exists n € N such that ||n|| > 1. Let ng be the least such n.
So there exists 0 < a < 1 ||no|| = n§. We write each n in the base of ng, that is we
choose 0 < {a;} <n and {a;} € N such that n = ag + a;ng + ...axnf. Note that:

[nll = |lao + a1no + -.axn|| < laoll + llai]| - 7§ + ... + [Jax|| - ng"

By the choice of ng we have that ||a;|] <1 so

Il < S = e (0 + g + ) < (Z (nga)t> e C
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since n > nf. Therefore ||n|| < n®-C and the constant C doesn’t depend on n. By
choosing large enough N we can show that [|[n™ || < nV-C so ||n|| < n®- C/N for
any N. This implies that ||n| < n®

Now we get the inequality in the other direction also: if n is written in the base of

ng as before, we have that ngﬂ >n > nlg. Also

)

In6 ™| = lln+ng ™ = nf| < llnll + [|ng™" —n

so using ||n|| < n®and n > n§ we get:

||n|| > Hnlg+1H _ Hnlg+1 _ nH > ng&(k+l) _ (nISJrl . n)a > ng(k+1) - (nISJrl o n;g)a

no

a 1\
= ot (1 — (1 - —) > n®C’'(ng, a).

Again, ||n]] > n® so ||n|| = n®. This defines the norm uniquely on all Q as |jab|| =
lla]| - ||b]| so taking a = m,b = n/m we get |[n/m| = (n/m)® . By writing Cauchy

sequences we see that || ||“is equivalent to || || .
case ii) For any n ||n|| < 1:

Let nobe the least n such that ||n|| < 1 (otherwise ||n|| =1 for any n # 0). ng must
be a prime since if ng = ny - no then the norm of ny or no must be smaller than 1
and we get a contradiction to the minimality of ng. Denote p = ng. We claim that
lgll = 1if g # p prime:

Suppose ||¢q|| < 1, so for large N we have HqNH < 1/2 . Also, for large M we have
HPM H < 1/2. since ged(p™, ¢™) = 1 then there exists m, n such that mp +ng?V =
1 but then:

L= = [[mp™ +na™ || < [mp™[|l+[na™[| = lnll-[p"||+lnl la* ] < 1/2+1/2 <1

So [|g|| = 1. Now let a = p%" - ... - pbr. If we denote ||p|| = p then we get that||al| =

[p]|°"(*) = perds(@) This defines the norm uniquely on Q. It is an easy exercise
to show that this norm is equivalent to || [|,,. O
Proposition. Show that for any 2 norms on a field |||, ,| ||yare equivalent iff

Iy = [H113 -
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Proof. Assume || [|; = |/]|5. Then it is clear that |a,| — 0 iff |ja,|* — 0. Now
let || ||y, /]|, be equivalent norms . We divide to cases, according to Ostrowski
theorem:

Casel:|| |, = || |“ and || ||, = || 1P for 0 < o, B < 1.

Case2: |||l ~ [[ll,- Il ~ [Ill,- If ¢ # p then the norms are not equivalent as
{p*} is a Cauchy series in || ||, but not in || |- Therefore by the proof of the last
theorem, [lafl; = [lp| " = 57" and fla]l, = lp| ") = g3 =
for any a € Z and therefore || ||, = || ||?

Case 3: |[[l; ~[[ll,+ [l lly ~ Il [l (or the opposite) . Then {p*} is a Cauchy series in
| I, but not in || ||,. O

Proposition. Prove that addition, multiplication, and inverse is continuous for

any norm on a field F.

Proof. Let € > 0 and =,y € F. Let o',y be such that |2/ — z| < €/2 ||y —y|| <
€/2. Then [[(x +y) — (&' +¢)|| < ||2' — z|| + ||’ — y|| < e. For multiplicity inverse:

Let  and € > 0, we have
|z —2'|| < 6 = min(e- |l]* /2,1/2)

then ||z — 2’ + 2'|| < ||z — 2'|| + [|2'|] < § + ||2’]| and the same for ||z’ —z + x| <
[ — 'l + |l=]| <0+ [lz][so [[|z[| = [|2"[]] < 4.

/

-
1/2 —1 _ _ o H—
11/2" =1/ — [l — 2|} / [|lz|
1 9 2
le =2 /el 2] <0 —m—= <ell2]" /2 —5 =
)" (1 = 6) ]|
The same idea for additive inverse, and multiplication. O

There are several nice properties of a non-archimedean norm:
1) every triangle (x,y, z) is isosceles! (“shve shokaim”).
2) every open ball of radius r with center x has all of its points as a center as well.

Proof: Let y € B(z,r), and z € B(y,r), then ||z —z| = ||z —y+y—z| <
maz(||z =y, lly — z||) <7 so z € B(x,r) so B(y,r) C B(x,r). The other way, let
w € B(x,7r), then [|lw—y| = [|lw—2+2z—y|| < max(|lw—2z|,[y—=z|) <r. So
B(y,r) = B(x,r).

3) Every Ball B, (x) is open and closed.
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4) If 2 p-adic balls are not distinct, then one of them contains the other.

Proof: Let be B(x,r1) and B(y,r2) such that B(x,r1) N B(y,72) # @ then there
exists z such that ||z —z| < r and [z —y| < re. Lets assume rp > 71 Let
w € B(x,r1) then

[w =yl = flw—-2+z—-2+z -yl <maz(lw -z, lz - z[|, |z = y]) <72

Now we can define the p-adic numbers.

Definition. Let p be a prime number. The field of p-adic numbers, denoted Q,,
is the completion of Q with respect to the p-adic absolute value. The completion
is defined just as we did in the case of the archimedean norm on Q- by equivalence
classes of Cauchy sequences. Therefore, any element a € Q) is represented by a
Cauchy sequence {a,} € Q with respect to || ||,. We say that a ~ b if {an} ~ {bn}
if lan — bnll, — 0 and we define the norm of a € Q, by lim; o [|as[, (it exists

by the following proposition).

Remark. Notice that just like R, this completion is not algebraically closed. Try to

find an equation in Q, when the solution is not in @Q,.

Proposition. If{a;} is a Cauchy series in Q with respect to |||, , then lim; o [la:]|,

exists.

Remark. If {a;} equivalent to {0} then by definition it exists. Else, for every ¢ > 0
there is a sub-sequence a;, such that ||a;,[[, > €. We take NV large enough such that
|a; — a||, < e for every i,i" > N, by the Cauchy property. Then |la; — a;,[|, <,
s0 [|a;, —aill, < [lai,|l, so by the property that every triangle is isosceles, we have
that [la;, |, = llai, — (ai, —ai)ll, = llasl|,- So there exists N such that [la;]|, is

constant for ¢ > V.
Theorem. Q, is complete.
Proof. Let {a;} € Q, be a sequence of equivalence classes with{a;;} their represen-

tatives as Cauchy sequences in Q . Assume that {a;} is Cauchy, i.e, there exists
M such that for any j,j > M:

e — a3l = lim [laj —aji]] <e.
This means that there is N; ;. such that for i > N; ji: |Jaj; — ajr;|| < €. In particular,

for any j, there exists N; such that for any i,7’ > N;: |laj; — ajir|| < p~7. We claim
that {b} = {arn, } is the limit of {a;}. Notice that:

{0 = aj}| = lim [{akn, — ajr}ll = lim |arn, — an,, + arn, , — ajng, + aing, — agel -
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For large enough k£ we have, for any 57 > M:
Haka — AkN; . T OkNj . — @GNy T ANy — aij < max(Haka — OkNjp H g HakNjk — AjNyy, H ) Haijk
So {b} is indeed the limit. O

Theorem. Every equivalence class a € Q, for which |lal, < 1 has ezactly one

representative Cauchy sequence of the form {a;} for which:

1)0<a; <p fori=1,2,..

2) a; = a;y1(mod(p®)) fori=1,2,...

Proof. At first we prove the uniqueness: If {a}} is a different sequence satisfying
(1) and (2) and if there exists io such that a;, # aj then a; # aj(mod(p™)) for
every i > ig. Therefore ||a; — a}|| > 1/p" so {a}},{a;} are not equivalent. Now we

prove existence: Suppose we have a Cauchy sequence {b;} € Q,,, we want to find an

equivalent sequence {a;} with the above property. We use the following lemma: O
Lemma. If x € Q and |[z||, < 1, then for any i there exists an integer o € Z such

that ||a — x|, < p~t. The integer a can be chosen in the set {0,1,2,..p" — 1},

Proof. Let © = a/b written in the form where (ged(a,b) = 1). Since [zf, < 1 it
follows that p does not divide b and therefore b and p*are relatively prime. Then
we can find m,n € Z such that bm + np’ = 1 . The intuition is that bm is close to
1 up to a small p-adic length so it is a good approximation to 1 so am is a good
approximation to a/b. So we pick o = am and get:

la = z[| = [lam — a/b]| = [la/b]| - [lbm = 1|| < bm — 1|| = ||np’|| < 1/p’
Note that we can add multiples of p* to o and still have
Ha —k-pt— 3:“ < max(l/pi, l/pi) < l/pi.

Therefore we can assume that « € {0,...p" — 1}. O
Now back to the proof:

Proof. Back to {b;}. Let N; be the number such that for every 4,7 > N; we have
lb; — bir|| < p~7 , and we can choose N, to be strictly increasing with j, and N; > j.

Observe that ||b;|| < 1if ¢ > Ny. Indeed, for all i > N; we have that ||b; — bi/|| <
1/p, |bil] < max(||bir]],||b; — bir||) and for ' — oo we have that ||by/ | — ||a||p <1.

—aij) _
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Now we use the lemma and get a sequence {a;} when 0 < a; < p/ such that
l|la; — by, || < p~7. We claim that{a;} is equivalent to {b;}, and satisfies the condi-

tions of the theorem. It is indeed satisfies the conditions as:

laji1 —ajll = ||ajs1 — bn,,, + 0N,y — b, — (a; — by, ||

) )

< ma;v(|‘aj+1 — b bNj41 — b, aj —bn; H) <p”’
So ajt1 — a; has at least p/as a common divisor as required.

Furthermore, for any j and any i > N;:

||ai — b1|| = Hal — Gy —|—aj — ij — ( i — bN])H S max(”ai — aj|| s |45 — ijH y Hbz — bN]H) S pij.

So {al} e {bz} O

Now, if we have some {a} € Q, with ||a|| > 1 then there exists some m such that
|la-p™| <1 and we have numbers with negative powers. Therefore we can present

the p-adic numbers as:

Qp:={ Z a; - p', where a; € {0...p" —1}}.
i=—k

We define the ring of integers , denoted Z,, as Zy, := {z € Qp|[|z[|, < 1} or equiva-
lently Zj := {> ;2 a; - p*, where a; € {0...p" — 1}} or equivalently Z, := Z |- the
closure of Z with respect to the p-adic norm. Notice that Z, is indeed a ring and

that the only invertible elements are € Z,, with [[z|, = 1.

4.2. p-adic expansions. We want to write the p-adic expansions of elements ¢
in Q. If ¢ € N, that’s just writing its p-base expansion. For example, (126); =
”...002001.” Let 2 := ™ be some rational number, with (n,m) = 1. It is enough to
describe the expansion when p { m (that is, when x € Z,, N Q) as otherwise we can
multiply 2 by p* for some k, calculate the expansion, and move the point k places
to the left.

We can’t take remainder of z modulo p, as with integers. Instead, we can calculate
the fraction x = 7 in F,x for k € N. Thus, the expansion of z in Q, is calculated

inductively:
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e Write the digit =g := [2] € F,,.

n
e The nominator of the difference 7 —x¢ = =="*¢ is divisible by p. Redefine

our fraction to be z := 1. (2 — z4), and continue inductively.
p n

Example. Calculate % € Q7. We start by solving the equation 2xg = 1(mod7).
The answer is ¢ = 4. In the second case we calculate %(%—4) =21. S02-(Tx1+4) =
1(mod49). Therefore x; = 3. We continue by induction and get the required

expansion.

Every ball in Q,, is a disjoint union of p balls. For p = 2, the ball Zy = B.(0,1) =
B,(0,2) consists of numbers with no digits to the right of the point. It’s a disjoint
union of two balls, By and B; - where each B; consists of all numbers ending with
the digit '¢’. Similarly, Bo = BooJ Bo1, B1 = BiolJ B11, where the elements in
B;; end with the digits '¢j’. And so on.

This recursive structure implies p-adic integers are homeomorphic to the Cantor
set.

Exercise. Show Z, = Cantor set as topological spaces, where the Cantor set has

the topology induced by the real numbers. The exercise proves Z,, is a compact set.

4.3. Inverse limits.

Definition. Let A; < A; + A3 + ... be a sequence of Abelian groups {4;}
together with a set of homomorphisms {f;; : A; — A; | j > i}, such that fi, =
fij o fik, Vi < j < k. An inverse limit of a sequence of Abelian groups is defined
by:
limA; ={@ € [[ Ai:ai = fij(ay),¥i < j € N}
ieN

Exercise. 1) Take A; := Z/p'Z, and f;; to be the projection Z/p'Z — Z/p'Z.
Prove that @Z /P"Z ~ 7, as a topological ring.

2)Q, is the localization by p of Z, and Q, = p~'Z, = {p~*ala € Z,} ~ @Q/p”Z,
again, as topological rings.

2) Prove that Q, ~ Cantor set - {1}.
3) Prove that Qp = Q.

4) Let U C Q, be some open set. Show that either U is homeomorphic to the

Cantor set, or to Cantor set-{1}.
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4.4. Haar measure and local fields. Let X be a topological space. Let C.(X)
be the space of continuous functions with compact support on X and consider

C.(X)*- the space of smooth measures.

Theorem. (Haar): Let G be a locally compact topological group. Then:

1) There exists a measure pon X such that p(U) = p(gU) for any measurable set
(Or equivalently, there exists ¢ € Co(X)* such that for any g € G, ¢(f) = &é(fy)
where fy(z) = f(g~' x)).

2) This measure is unique up to a scalar.

Exercise. 1) Prove Haar theorem for (Q,, +).

2) We can define another invariant measure p,(B) = p(aB) for any a € Q,. Show
that pe = |al - p.

Definition. A local field is a topological field that is not discrete and locally

compact.

Theorem. Any local field F' is isomorphic (as topological field) to one of the fol-

lowing:

* Archimedean fields- R or C.

* Finite extensions of Qp.

* Finite extensions of the formal Laurent series: - Fo((t)) = {d o=, ait'} where
F, is a finite field (so ¢ may be some power of p).

Proof. The main points of the proof are as follows:

(1) Define the measure on F't using Haar Theorem. We can define absolute value,
up to scalar multiplication, that is, there exists a(a) such that, p, = a(a)u — |a| =
afa).

(2) Prove that every local field has a norm that defines its topology, which defined

as a scalar multiplication of Haar measure.
(3) Prove that every compact metric space is complete.

(4) Every local field of char 0 includes Q and its completion. This means that F
contains R if it is archimedean, and Q,, if it is non-archimedean.
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(5) Show that if F' is characteristic 0, then F' must be a finite extension of R or Q,,
otherwise (non algebraic extension) it will not be compact. Show that any such

finite extension is indeed a local field.

(6) For char(F) # 0 show that F' contains a transcendental element, name it ¢, and
show that it contains Fy((¢)). Show that F' is a finite extension of Fy((t)). O

4.5. Some basic properties of [-spaces.

Definition. An [—space X is an Hausdorff, locally compact an totally disconnected

topological space.

Exercise. 1) This definition is equivalent to having a basis of open compact subsets
(and being Hausdorff).

2) Any non-archimedean local field is an [-space.

3) Finite products, and open/closed subsets of an I-space is an [-space. Note that

any subset of a totally disconnected topological space is totally disconnected.
Definition. A space is called countable at 0o if X = U,z K, where K,, is compact.

Exercise. 1) Find a compact I-space X and U C X such that U is not countable

at oo.

2) Every o-compact, S7 I-space X is homeomorphic to one of the following:
(a) Countable (or finite) discrete space.

(b) Cantor set.

(c) Cantor set minus a point.

d) Disjoint union of b) or ¢) with a).

Definition. Refinement of a cover UU; = X is a cover {V;} such that for any j,
we have that V; C U; for some 1.

Exercise. 1) Let C C X be a compact subset of an [-space. Then any cover has

an open compact disjoint refinement.

2) Let X be a countable at oo [-space, then any cover has an open compact disjoint

refinement.



GENERELIZED FUNCTIONS LECTURES 31

Distributions on [-spaces.

Definition. Let X be an [-space. A function f from X to the field will be called
a smooth function if for every point x € X there is an open neighborhood U such

that the restriction f|y is constant.

Proposition. Let X be an l-space. Show that the smooth functions C°(X) sep-
arates the points in X. Assuming this ezercise, the Stone-Weierstrass theorem
implies that C*°(X) is dense in C(X).

Proof. Let x,y € X. As X is Hausdorff and having a basis of open compact, .
there exists U, and U, compact and open. Set f(U,) = 0 and f(X/U,) = 1. Then

f(x) =0, and f(y) = 1. O

Definition. The functions with compact support, C2°(X) C C*(X), are called
Schwartz functions. We denote them by S(X). We also denote Dist(X) = C°(X)* =
S(X)*. We consider both spaces as vector spaces without topology.

Exercise. Let X be an [-space, show that C2°(X)* is a sheaf.

Remark. In R™, the Schwartz functions are the functions whose derivatives decrease
faster than every polynomial, and C°(R") C S(X) € C*°(R"). We will define

them in the next lectures.

4.6. Distributions supported on a subspace. Recall that over R, the descrip-
tion of distributions on a space X that are supported on Z is a little complicated
(we did that using filtrations). Distributions on I-spaces behave much better.

Definition. Let X be an l-space, the support of a distribution & € S*(X) is Suppé
= the smallest closed subset S such that £|x\g = 0.

Proposition. Let i : S*(Z) — S5 (X) be the map induced by the restriction Res :
S(X)— S(Z). Then i is an inclusion.

Proof. We prove it by showing the dual map j : S(X) — S(Z) is onto. Let
f€8(Z). As f is locally constant and compactly supported, we may assume that
Z is compact and has a covering by a finite number of open sets U, (open in Z)
with f|y, = ca. Notice that each U,, is of the form U, = W, N Z, where W, is
open in X . Therefore, Z C {W,}, and as Z is compact, we may refine {W,} and
get that Z C U;V; when V; open compact and V; N Z C W, N Z = U, for some
a. Therefore we can extend f by defining f(x) = ¢, if 2 € V; C W, and zero
otherwise. O
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Proposition. (Ezact Sequence of an Open Subset). Let U C X be open and set
Z=X\U. Then 0 = S(U) = S(X) — S(Z) — 0 is exact.

Proof. We showed that S(X)—S(Z) is onto, and it is clear that extension by zero
S(U)—S(X) is injective. It is left to prove exactness in the middle. Let f € S(X)
such that f|z = 0. As f is locally constant, there is an open set V O Z such that
fly = 0. This implies that f is supported on Z¢ = U and therefore f|y € S(U). O

Corollary. Let X be an l-space, and Z C X a closed subspace. Then:
1) The inclusion i : S*(Z) — S5(X) is an isomorphism.
2) There is an exact sequence 0 — S*(Z) — S*(X) — S*(X\Z) — 0.

Remark. Note that over R, the map i is not onto . For example, for Z := {0} C R,
the derivatives 6" € S%(R™) but not in the image of i. Moreover, on R™we have
an exact sequence:

0—S5(X)—= S"(X) = S*(X\2).

Exercise. Let V' be a vector space (maybe infinite-dimensional) over a field K,
and L C V a linear subspace. Show that Vf € L* 3g € V* : g|, = f. Use Zorn’s

lemma.

So far we showed two advantages of distributions on [-spaces over distributions on
R™:

(1) Every distribution ¢ supported on some Z C X is also supported on a
neighborhood of Z.
(2) The map i: S*(Z) — S5 (X) is onto.

Both these qualities can be achieved over R™ by switching from C2°(R™) to real-

valued Schwartz functions. A third advantage is:

Proposition. Let X,Y be l-spaces. Given f1 € S(X), fo € S(Y), consider the
bilinear map ¢ : S(X)@S(Y) = S(X xY) where (¢(f1 ® f2))(x,y) := fi(x)- fa(y).

Then ¢ is locally constant and an isomorphism of vector spaces.

Proof. The locally constant property is easy to see by refinement of the open sets
in X and Y . Surjectivity: let f € S(X xY). Then f = > cy,xv, and by
refining {U; x V;} we may assume that they are disjoint. Notice that each term

cuixv; € ¢(f1, f2) so we are done.
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Injectivity: Assume that ¢(>°, f1; ® f2i))(x;y) :== >, fui(x) - f2i(y) = 0. We can
assume that {fi;} are linearly independent and that {f2;} are non zero and that
the sum is minimal with respect to those demands. If we take some y such that
f21(y) # 0 we get that for any @ € X, Y. f1i() - f2i(y) = 0. This implies that
f1i(x) are linearly dependent. Contradiction. Hence f2; = 0 and hence f1; ® fo; =0

and contradiction to the minimality of the summation. 0

5. LECTURE 5- DISTRIBUTION WITH VALUES ON A VECTOR SPACE

Definition. Let I’ be a local field. V a vector space over F'. We can define
C°(X,V) to be the space of smooth functions with compact support from X to
V', with the same convergence condition as in the usual V' = F case. Here the

smoothness of a function is the usual coordinate-wise one.

Exercise. Prove that C°(X,V) = C*°(X) @ V as topological vector-spaces, the
topology on C°(X) ®p V is given by choosing a basis to identify V' with F™ and
then take the product topology on C°(X) ®@p F™ 2.4y (C°(X))". In particular,

this topology is independent on a choice of a basis.

5.1. Smooth measures. A measure has 2 equivalent definitions: A o additive map
from the o-algebra of Borel subsets of X into R. For us, the following definition is
better:

Definition: Let X be a locally compact topological space. The space of signed
measures on X is C.(X)*, i.e. a continuous functional on C2°(X). A signed measure

is a measure if it is non-negative on non-negative function.

As the space C.(X) is larger than C°(X), its dual is smaller. Specifically C.(X)* C
C2°(X)*, the inclusion is the dual of the obvious continuous map C°(X) — C.(X).
Inside C.(X)* there is a one dimensional space of Haar measures, which in this case

is just the space of multiples of the Lebesgue measure.

Definition: Let V be a locally compact f.d vector space (If it is not finite dimen-
sional then it can’t be locally compact). The space of Haar measures on V', denoted

hy € C.(V)*, is the space of translation invariant measures.

The fact that this space is one dimensional is non-trivial, but the intuition is as
follows: A Borel measure on X is determined by its value on cubes with sides parallel
to the axes planes of rational side length, as they form basis of the topology. It is
not hard to see that if the measure is translation invariant, the measures of these

cubes are determined by the measure of the unit cube.
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Exercise. Let £ € C2°(X)* which is translation invariant. Prove that £ is a Haar
measure. Note that C2°(X)* 2 C.(X)*so there might be other translation invariant

functionals other then the Haar measure.

Definition. A measure p on V is called a smooth measure if u € C°(V)hy, i.e.
u = f(x)h where f is smooth and h is a Haar measure. We denote this space
by p(V). Note that by definition, u3°(V) ~cwn CX(V hy) =~ CX(V) & hy
canonically, and also p2°(V) ~ C°(V) by choosing some Haar measure, but this

isomorphism is not canonical.

5.2. Generalized Functions Versus Distributions. We are now in position to

understand the difference between generalized functions and distributions.

A distribution on V is continuous functional on the space of smooth functions with
compact support:

Dist(V) :=C(V)*
A generalized function is a continuous functional on the space of smooth measures

with compact support on V, i.e.
C=(V) = C2(Vhy)",

As functions can be integrated against smooth measures, thus we have a pairing

CP(V,hy) x C2(V) =5 F. Though we have the following picture:
C:=°(V) <= Dist(V)
JT i T
ce(V) = ux(V)

And the diagonals are dual to each other. The inclusion i : u2°(V') < Dist(V) is via
the pairing C°(V, hy) x C°(V) =5 F, and the inclusion j : CX(V) = C (V)
is defined by f — ¢y where () = [ fdu for a smooth measure p.

Exercise. hy ~ Dist(V)" or equivalently Dist(V)V is one dimensional, for any

finite dimensional vector space V over a local field F.

Definition. We can also define generalized functions with value in a vector space,
by either:

1) C~=(V,E) = C~*(V) @ E
2) C~>°(V,E) :=C>(V,hy ® E*)*

and then C~>°(V, hy ) := C~>°(V) ® hy = C°(V)* = Dist(V).
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Exercise. 1) Show that the two definition for C~°°(V, E) are equivalent.

2) Define an embedding C°(V, E) — C~>=(V, E).

5.3. Some linear algebra. Let V' be an n dimensional vector space over a local
field F. Let Q'P(V) be the space of anti-symmetric n-forms on V . It is a one-
dimensional space, and QP(V) = A\"(V*).

Exercise. Let B be the space of bases of V . Show that QP(V) = {f: B — F :
f(B1) = det(M5?)f(Bz)} and also that QP(V) = {f : V"= F : f(Avy, ..., Av,) =
det(A)f(v1,...,vn)}.

Definition. If V is over R, then we have two related spaces, the space of densities

and the space of orientations:

Dens(V)={f:B—R: f(B)) = ‘det(Mgf) £(B2)}

And
Ori(V) = {f : B — R [(By) = sign(det(ME?) - (Ba)}

Exercise. Q°P(V) = Dens(V) ® Ori(V), via the tensor product of the natural
maps Q°P(V) — Dens(V) and Q*(V) — Ori(V).

Note that this space of orientation is a linear space and not two points as one expect
from orientation. On the other hand, we have two distinguished points in Ori(V),
the two functions with absolute value 1. These are the usual orientations we used
to think of.

Exercise. Dens(V) ~cun hy.

Definition. Let F' be a local field with absolute value | |. We can define a functor
||lon V' from one dimensional vector spaces over F' to one dimensional vector spaces
over R, by

VI:=Af: V" —R[f(av) = |af f(v)}

Exercise. 1) |[L® M| = |L| ® |M].

2) [Q°P(V)| ~ Dens(V).

3) I W C V then hw ® hy/w Zean hy-

4) W CV,Qr(V) =~ QP(W) @ Q<P (V/W)

5) If F =R, then Ori(V) = Ori(W) @ Ori(V/W).
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5.4. Generalized Functions With Support on a Subspace. Let W C V be
a linear spaces. We showed that over a non archimedean field F', Disty (V) =
Dist(W), and for F = R we have described the case of V = R™ and W = R*. The
goal now is to describe the distributions on V' supported on W for any W C V
linear spaces over R. Recall that inside Dist(V), there is a subspace Disty (V') of
distributions supported on W. We have defined a filtration Fyj, (V) on C2°(V') by

Fy (V) ={f € C(V) : Dflw = 0,|D| < i}
and we have defined F; w (V') C Distw (V) by

F(V)w = (C2(V)/Fy(V))" = {€ € Dist(V)|(¢, f) = 0 for any f € Fjy(V)}

We denote F;(V)w = Fi,(V)t where Y1 = (X/Y)". We want to describe
F;(V)w/F;—1(V)w in canonical terms, i.e. in a way invariant under diffeomor-

phisms preserving W.

Theorem. We have a (V,W)-diffeomorphism preserving isormophism of vector

spaces:

Fi(V)w /Fees (V) Zean O (W, Sym(W))* = Dist(W) & Sym' (V/W).

Observe that Sym!(W+) = SymPoly(V/W,...,V/W;R) = {f : Vi — R|flwxvx..xv =

0}. The theorem is based on the following lemma:

Lemma. F;(V)w/F—1(V)w = (Fiy ' (V) /Fi, (V))*.

Proof. For ¢ € Fi(V)w, ¢|pi-1y) vanish on Fi,(V), and we send it to the induced
functional on Fjy ' (V)/F{, (V), denoted ¢. This is an injective morphism, as if
¢ = 0 then ¢|F5;1(V) =0s0 ¢ € F;—1(V)w. surjectivity follows from Hahn-Banach
theorem in the following way: any ¢ € (Fy, '(V)/Fj,(V))* can be extended to

1S (C?(V)/Fﬁv(v))* = F;(V)w. Therefore [¢] + F;—1(V)w — . 0

~

Hence, in order to prove the theorem it will be sufficient to prove that £y, ' (V) /Fjy (V)
C*(W, Sym*(W=)). For this we will do the natural thing- attach to f its i-th
derivatives. Explicitly, we define:

D(f)(w)(v1y +eey5) = Oy .0y, f(w).

It is well defined as f vanish identically on W, so this form kills all the tangential
derivatives. It is one-to-one as if ®(f) = 0, then f vanish with all of its derivatives

up to degree i so it is in Fyj, (V).
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Exercise. 1) prove that ® is onto, hence an isomorphism.

2) Show that the isomorphism F;(V)w/Fi1(V)w Zean O (W, Symi(W+))* is
invariant with respect to diffeomorphism of (V, W).

3) Find & € Dist(V — W) s.t there is no n € Dist(V) such that n|y_w = £. That
is, the natural map Dist(V) — Dist(V — W) is not onto.

For the generalized-functions case, we get the same result by twisting with Haar

measures. Indeed,
F(Vyw /[ Fioa(V)w = CZ (W, Sym (W))" = C™(W, Sym' (W) @ hw)

. Take G;(V)w = Gi(V)w @hj, € C~>°(V). We get, by the compatibility of tensor

and quotient,

Gi(Vw/Gi_1(V)w = C~(W, Sym (W)@hw )@hi, = C~°(W, Sym' (W) @hw@h3,)

But what is this (one dimensional) space hy ® hj,?
Exercise. If W C V, then:
]-) hW oy hV/W Ecan hV-

2) hi, = hy-.

From the exercise it follows that
hw @ hi, = (h?;V X hv)* = (h?;V ® hyw ® hV/W)* = hT//W = h?WL)* = hy.
Corollary. By the above argument it follows that:

Gi(V)w /Gioar(V)w = C™(W, Sym' (W) @ hy ).
6. LECTURE 6- MANIFOLDS

Definition. 1) Let X be a topological space. A cover {U;} is called locally finite,
if for any € X there is a neighborhood V such that V' intersects only finite number

of sets in the cover.

2) A topological space X is called paracompact, if any open cover has a refinement

that is locally finite.

3) A toplological manifold is a topological space X that is locally homeomorphic

to R™, Hausdorff and paracompact.
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Exercise. 1) Find a space X which is locally homeomorphic to R™ at every point

and is paracompact but is not Hausdorff.

2) Find a space which is Hausdorff, locally isomorphic to R™ but is not para-

compact.

We will now give a definition for (smooth) manifolds that is different then the usual
definition in differential topology. We will use the following more general definition

of sheaves of functions:

Definition. A sheaf of (K-valued) functions F on a topological space X is an as-
signment U — F(U) C {f : U — K| f is continuous} such that:

1) F(U) is an algebra with unity.
2) Res{, F(U) C F(V) is the usual restriction f — f|y.

3) For every open cover U = |J Uj, if there exists a set of functions {f;} € F(U;) s.t.
iel

s filw.nuy) = filw.nu,) for any 4,5 € I then there exists f € F(U) s.t. flu, = fi

for any i € I.

A sheaf of functions on X will be denoted by a pair (X, F)
Remark. Note that the second demand implies the identity axiom.

Example. Function sheaves can be “continuous functions on X”, “smooth functions
on X”.

Definition. 1) Let (X,F),(Y,G) be sheaves of functions. Then a morphism ¢ :
(X, F) — (Y,G) is amap ¢ : X — Y such that Vg € G(U) we have that
go@lo-11y € F(e~1(U)). In other words, a map ¢# : G — ¢, F.

2) A smooth manifold is a space with functions (X, C* (X)), where X is a topolog-
ical manifold and for every point « € X there is a open neighborhood U such that
(U,C=(X)|y) ~ (R™,C*°(R"™)) as sheaves of functions, that is maps ¢ : U — R",
e+ (R",C®(R")) — 0.C®°(X)|y and ¢ : R" — U, ¢# : C®(X)|y —
$.C>(R™)) such that ¢ =9 ~! and (¢ 0 )* = Idcee (x))ys (9 0 ¥)F = Idge @)

Remark. The usual definition of manifolds adds an "atlas" to the structure of

X: an open cover X = |J U; with diffeomorphism ¢; : U; — R™. But we also
i€l
demand thato; qu;l is differentiable, so it looks like an “extra” demand with respect

to the definition above. If we look closely, we see that a pair of isomorphisms
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@i+ (Us, C(Ui)) — (R",C*(R")), and @; : (U;, C=(U;)) — (R",C>=(R"))
implies that
# : (

Rn? COO(Rn))LPj(UiﬁUj) — (901 © <P;1)* (an COO(Rn)”QDi(UiﬁUj)

is an isomorphism. In particular, by the following exercise, we can deduce that

(<P’L o w;l U—;QUJ‘)

@i o cp;1|UmUj is smooth and actually a diffeomorphism. Therefore the 2 above

definitions for smooth manifolds are equivalent.

Exercise. 1) Show that C®(R";R*) = {f : R* — RF : f*(u) € C®(R")Vu €
C>=(RF)}.

2) Amap f: M — N is a smooth map of manifolds iff it is a morphism of ringed

spaces (sheaves of smooth functions).

A theorem by Whitney shows that every n-dimensional manifold can be embedded
in R27+1,

6.1. Tangent space of a manifold. There are several “equivalent definition” for a
tangent space of a smooth manifold M at a point x € M. We will give a categorical
definition and then we will give several proofs of existence that they will all be

equivalent.

Definition. A tangent space of a smooth manifold M at a point x € M is a functor
Tan: (M, x) — T, M from pointed smooth manifolds to vector spaces satisty the

following conditions:
1) (V,0) — V.

2) It f1, f2: (M,z) — R satisty that (f1 — f2) (y) = o(||]x — y||) for any norm || ||
on a manifold, then Tan(f1) = Tan(f2).

3) If U — M is an open embedding, then T'an((U, z) < (M, z)) is an isomorphism.

There are several structures that satisfy the above conditions:

(1) Tu(M) :={v:((—1,1),0) = (M, z)} modulo the relation v; ~ o iff exists
a neighborhood U of = and a isomorphism ¢ : U — R" s.t. (¢ o) (x) —
(¢ oy2) (x). Tt is easy to check that this definition doesn’t depend on the
choice of (¢,U)

(2) To(M) = {d : C°(M) — R| d is linear,d(f - g) = df - g(z) + f(z) - dg}.
This is the space of derivations.

(3) Define m, := {f € C°°(M)| f(x) = 0}, and take T.(M) := (my/m?2)*.
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Exercise. Show the definitions are equivalent.

Definition. Now let ¢ : M — N be smooth. The differential of ¢ in x € M is a
linear map d¢ : T(M) — Ty(q)(N) that d.(¢)(7) := do .

Exercise. Show that given manifolds M, N, K and maps ¢ : M — N, : N —
K,v=1o0¢: M — K, the differentials satisfy d,(v) = dy)(¢) 0 ds(9).

6.2. Type of maps of smooth manifolds.

Definition. Let ¢ : M — N be a smooth map between manifolds.

*¢ is an immersion if d,¢ is one-to-one.

* ¢ is a submersion if d,¢ is onto.

* ¢ is a local isomorphism or étale if d,¢ is one-to-one and onto.

* ¢ is an embedding if it’s an immersion and there is a homeomorphism M 2 ¢(M).

* ¢ is a proper map if for every compact K, the preimage ¢~ (K) is compact. In
particular, fibers are compact in M.

* ¢ is a cover map if for x € N there exists a neighborhood U C M, such that
dlp-ry + ¢ (U) — U is a diffeomorphism, and is a composition ¢~(U) —
U x D — U for a discrete set D.

Example. 1) Let ¢ : [-1,1] — R? be a smooth path that slows to a stop in
#(0) = (0,0), but spends no time in (0,0). That is, all the derivatives are zeroed
#™(0) = 0, but ¢(z) # 0 for all = in some neighborhood [—¢,¢]. Such a ¢ is

one-to-one around 0, but is not an immersion at 0.

2) An immersion isn’t necessarily one-to-one. An example is a self-intersecting path
¢ : R — R? with constant speed.

3) Let L,D be finite dimensional linear spaces. The differential of a map ¢ €
Hom(L,V) is ¢ itself. Thus, a one-to-one ¢ will be an immersion, an onto ¢ will

be a submersion, and an isomorphism of linear space will be an étale.

Exercise. 1) Find a ¢ : M — N which is a one-to-one immersion, but isn’t an
embedding.

2) Show that every proper map which a one-to-one immersion is a closed embedding.

3) Show that a proper map which is an étale is a cover map, and that a cover map

with finite fibers is proper and étale.
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Definition. A fibration is a map X —= Y, where locally p1(U) ~ U x Z for
U C Y and some topological vector space Z.

Exercise. A proper submersion is a fibration.

Definition. Given a submanifold X C M, and an embedding i : X — M, we define
the normal bundle at a point x € M to be Ny (M) := i*(T'M)/TX. Similarly, the
conormal bundle is CN, (M) := (N, (M))*.

Example. For M = S? the normal bundle at a point will give the normal vector
to it. It will be isomorphic to the trivial bundle on M.

6.3. Analytic manifolds and Vector bundles. We would like to introduce to
more important structures: an analytic F- manifold (for any local field F') and a

real vector bundle.

Definition. 1) An analytic F-manifold is a space M which is locally isomorphic

to F™ together with a sheaf of functions

AnU) ={f:U = F:VzeU,3r >0st. fig,(@)(y) = Z aE(x—y)E},
kenn

where B, () is the ball of radius 7 around z, and k is a multi-index, thus (z— y)’; =

[T (i — ya)*™.

i=0

2) A smooth analytic manifold is a ringed space (of functions) (X, F) locally iso-
morphic to (F", An).

Remark. We don’t have partition of unity in analytic manifolds. If an analytic

function zeroes in some neighborhood, it must be the zero function.

Example. There exists singular analytic manifolds, and in particular any singular

affine algebraic variety.

Definition. Let M be a smooth manifold or a p-adic analytic manifold. A real
vector bundle over M is a tuple (E, p) where F is a topological space and p : E — M

is a continuous surjection such that:

1) For every € M we have a structure of a finite dimensional real vector space on
pH(z) =Vs .

2) For every € M there exists an open = € U and a local trivialization ¢ :
Vy x U — p~1(U) where ¢y is a homeomorphism (or diffeomorphism if M is a real
smooth manifold) and p o oy (v, z) =z for all v € V..



GENERELIZED FUNCTIONS LECTURES 42

3) The maps v — @y (v, x) are linear isomorphisms.

If E~V x M we say (E,p) is a trivial bundle over M.

Example. 1) (exercise) The Mobius strip is homeomorphic to I x S*. By extending
each segment I to R, we can define a bundle over the manifold S'. This way, the
points in E are pairs (6, x), where  runs over the points of the line of angle 0.5 - 6.
Define the vector bundle above rigorously and show it is not diffeomorphic to the

bundle S* x R. You can assume the Mobius strip isn’t diffeomorphic to the S'.

2) The tangent bundle of M = S' is T'S* ~ S! x R. The tangent space at any point
is one-dimensional, and changes smoothly as we "walk" on the circle. However, on
M = 5?2 the tangent bundle will not be isomorphic to S? x R2. This holds since

every vector field on S? vanishes ("you can’t comb a hedgehog").

Definition. Let (M, E) be a vector bundle. Given neighborhoods U,V , consider
oytopr  (UNV)xRF — (UNV) xRF, We can write ¢y, oy (,v) = (2, guv (v))
where gy € GL(RF). The maps gy are called transition functions.

Notice that the set of transition functions gy, satisfy the cocycle conditions
guv () = 1d, guv(x)gvw (z) = guw (x). Conversely, given a fiber bundle (E, X, 7, R¥)
with a GL(RF) cocycle acting in the standard way on the fiber R*, there is associ-

ated a vector bundle. This is sometimes taken as the definition of a vector bundle.

Definition. Let Ey, E5 be two vector bundles over M. The direct sum F; @ Fs is

defined as follows:

Given a bundle 7 : £y — M and 75 : F1 — M, and a collection of trivializations
o N Uy) — Uy x RF 62 - 151 (V;) — V; x R¥, by refining the covers we may
assume that V; = U;. Now define By @ Ey := | |, o),
Eim = w{l(m). The map 7 : 1@ Fy — M is defined by the canonical projection.
We define the topology on E; @ Es by the trivializations 1; : 7~ 1(U;) — U; x R?*
by ¥i(m, (v,w)) = (m, ¢t (m,v),p?(m,u)). It is easily seen that the transition
functions 1; o ;! : U; NU; x R?* — U; NU; x R?* satisfy

by 0 g (my (v,0) = (my 6L (81) 7" (m, 0), 0% (62) " (m, u))

and as ¢! and ¢? satisfy the cocycle conditions, so does ¢. This defines a structure

By @ Ea,y as a set where

of a vector bundle.

Exercise. Find non-isomorphic bundles F, E’, such that E® F = E' @ F for some

bundle F' (Hint: use vector bundles over S?).
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Similarly, we can define tensor products of bundles, multilinear n-forms, and their

absolute value and sign.

Exercise. 1) Let @ : Vect” — Vect™ be a “smooth” functor, i.e, ®(T),T €
Hom(V,W) ~R" is a smooth map from R to R™". Define functor ® : VecBun(M)" —>
VecBun(M)™.

2) For vector bundles Eq, F», define the following notions: ( you can, and advised

to, use part 1)

(a) EF.

(b) E1 @ Es.

(c) B1 ® Es.

(d) For an embedding ¢ : Ey < Es, define Ey/E;.
(A" (Ex), Sym* (E).

(f) In the real/complex case, define Dens(FE?).

Definition. 1) Let M be a smooth manifold, we can define its density bundle by
Dy = |QP(T'M)|, that is the density bundle of the tangent bundle.

2) Let X be an F analytic manifold, we define its density bundle by Dx =
QLo (7).

6.4. sections of a bundle. A set theoretic section of a function f : X — Y is
a function ¢ : ¥ — X s.it. go f = id. For example, for f : R? — R which is
the projection f(z,y) := = a section can be g(z) := (z,sinz). This a just be a
(continuous) choice of representatives of fibers.

In our case, sections of bundles can help us define many basic concepts. For exam-

ple:

A section of the tangent bundle is a vector field.

A section of kth exterior power of the cotangent bundle is a di f ferential form

of degree k.

A section of the density bundle is called a density.

A section of the orientations bundle is an orientation on a manifold.
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Exercise. 1) Show the every manifold has a Riemannian metric, i.e , an inner

product on tangent spaces
<,>p: TL,M xT,M — R
which varies smoothly.

2) Let M be a smooth n-dimensional Riemannian manifold, that is a smooth real
manifold with a Riemannian metric. Construct explicitly a density over M, that
is a smooth section of the density bundle over M. The density should respect
coordinate changes, and be the standard density when M is a linear space with the

standard inner product.

Remark. We don’t always have top differential forms on a manifold, and the Mobius

strip is a counter-example. However, we can always define densities.

Since a density over a space gives us a measure on it, we can thus define integrals

over manifolds.

6.5. Equivalent description of vector bundles.

Definition. Let V be a finite dimensional vector space and X a topological space.
We define the constant sheaf V 5 to be the sheafification of the constant presheaf,
which assigns to every open set in X the vector space V. We say that a sheaf F
over X is locally constant if for every z € X there exists an open x € U, and a

finite dimensional vector space V. such that F, ~ Vo -

Exercise. 1) Let V be a finite dimensional vector space and X a topological space.

Show that V y (U) cousists of the locally constant functions from U to V.

2) Show that if X is a o-compact ¢-space then every locally constant sheaf F where

Fy =~ F, for all z,y € X is isomorphic to the constant sheaf.
Definition. Leray sheaf on X is a local homeomorphism p: E — X.

Theorem. The definition of a Leray sheaf is equivalent to the Grothendieck defi-

nition of a sheaf.

Proof. Given a Leray sheaf p we define a Grothendieck sheaf F(U) := {continuous sections U —
p~1(U)}. For the other direction, given a Grothendieck sheaf F, we define £ =
|_|16X F. with the natural projection map p : E — X. We define a basis for
the topology of E by Usv = {(z,(s)z) : * € V} where V C X is open and
se F(V). O



GENERELIZED FUNCTIONS LECTURES 45

Exercise. 1) Complete the proof by showing that those functors induce an equiv-

alence of categories.

2) Show that covering spaces correspond to locally constant sheaves, and that a

covering space is trivial exactly when it corresponds to a constant sheaf.

3) Give an example for a locally constant sheaf arising from a covering space which

is not constant.

7. DISTRIBUTION ON ANALYTIC/SMOOTH MANIFOLDS

Definition. Let F be an F-analytic one dimensional vector bundle over an F-
analytic manifold X. Define a real vector bundle |E| as follows. As a set define
|E| := {(z,v)|x € X,v € |E;|} and define a topology by giving C the discrete
topology, so locally E|y ~ U x F and |E||y ~ U x |F| ~ U x C. Hence, a base for
the topology is V; v.a = ¢i(U x {a}) where ¢; : U x C — |E| |y and a € C.

Remark. Note that p : |[E|] — X is a local homeomorphism as V;y, ~ U as a
topological space. Hence p is a Leray sheaf. Its corresponding Grothendieck sheaf
is F(U) := {continuous sections U — p~(U)}. This is a locally constant sheaf

Cyover X.

Definition. We can now define density bundle over an F-analytic manifold X in

two ways:

Def 1 (Leray): Dx := |Q!P(X)|.

Def 2 (Grothendieck):

Dx(U) :={p € Mesures(U)|Vy € O — U, there exists f € C°°(O%) such that p = ¢.(f-Haar)}

Lemma. Let ¢ : F™ — F™ be analytic diffeomorphism and f € C.(F™). Then
hpn(f) =: [ fdz = [(f o p)dz - |det(Dyp)|.

Exercise. Show that the above definitions are equivalent.

7.1. Smooth sections of a vector bundle. In this subsection we assume that

F =R and we are dealing with smooth manifolds.

Definition. We define

CX(M,E):={f: M — E such that wof = Idp; and 3K compact such that f|xc(m) = (m,0)}
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Recall that C°(R", R*) = limCF (R",R*) where K, is an increasing sequence of
compact sets. We will now define a topology on C2°(M, E) using the topology on
C(R™, R¥):

Case 1- The trivial case: M ~ R" and £ ~ R" x R¥ — R". Note that
continuous sections from R”™ to R™ x R* just means a function in C°(R", R¥).
Hence we give C°(M, F) the topology of C°(R™, RF).

Exercise. Show that the above definition is well defined, i.e, doesn’t depend on
the isomorphism M ~ R™ and E ~ R" x R¥ — R”. In other words, show that:

(a) Given a diffeomorphism ¢ : R® — R™ then it induces a homeomorphism
o* : C®(R";R" x RF) — C2(R"; R x RF).

(b) Given a smooth map ¢ € C°°(R™; GL,(R)) we have that . : CZ(R";R™ x
R¥) — C°(R™; R" x R¥) is a homeomorphism.

Case 2- General case: We can choose small enough {U;} such that M = UU;

where ¢; : U; =5 R" and also ¥ © Ely, = R" x R* (an isomorphism of vector

bundles). We have a surjective map
P @Cgo(UivE|U¢) - CSO(M,E)
iel
by summation (surjectivity follows from partition of unity). Hence we can define a
quotient topology according to the map ¢, that is, we define a set U C C°(M, E)
to be open if ¢~ *(U) is open in @, ; C° (U, Ely,) (with the direct sum topology).

Exercise. Prove that this “definition” is well defined, i.e, show that that the defini-
tion doesn’t depend on the cover U;. Reduce to showing that @, ; C2°(U;, RF) —
C>(R",R¥) is open. The full proof for this exercise is at “Tirgul 6”.

Now we will give a different description for the topology of C'>°(R™). At first observe
that f € C°(R") iff for any g € C*°(R"™), gf is bounded. Now let D € Dif f(R")-
differential operators on C2°(R™). Define a seminorm | f||, by sup|D(f)|. We
get that C°(R™) is an inverse limit of Banach spaces Bp where each Bp is the
completion of C2°(R™) with respect to || || ,.(Verify with Rami).

Definition. Diff(M) is an operator on C*°(M) — C*°(M) such that for any
(or some) cover UU; = M such that ¢; : U; — R™ we have that cp{l oDoy; €

Dif f(R™).
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Now we would like to define Dif f(C>(M, E),C>(M,E")). Again we divide it into

cases:

Case 1- E, E' is trivial: E ~ M xR* and B ~ M xR* . Then Dif f(C=(M, E), C®(M, E')) ~
Dif f(C°°(M)*,C>°(M)*") and this is isomorphic (as vector spaces) to k x &’ ma-
trices with values in Dif f(C>*(M)).

Exercise. Show that the definition of differential operator D € Dif f(C*° (M, E), C*°(M, E'))
for E ~ M x R¥ and E' ~ M x R¥ doesn’t depend on the isomorphisms.

Case 2- the general case: Let A € Hom(C*>®(M,E),C>(M,E")). Then we say
that A € Dif f(C>®(M, E),C*>(M, E")) iff:

* For any f12 € C°(M, E) such that fi|y = fo|v, then Afilu = Afelu.
*If E'|y is trivializable then A|y € Dif f(U, E|v, E'|v).

Definition. Second definition for the topology on C°(M, E): For any D €
Dif f(C>(M,E),C>*(M, E)) define ||f||, = sup|D(f)| (choose some norm on E).
Define the topology on C2°(M, E) as

CE(M, E) = imp(CZ(M, E), [ £ 5)-

Exercise. Given a manifold M and a vector bundle E over it show that the two
definitions of the topology on CS°(M; E) are equivalent (one defined via taking a

cover of M and trivialization of F and the other through differential operators).

8. DISTRIBUTIONS OVER GEOMETRIC OBJECTS

Definition. 1) We define distributions on smooth sections by Dist(M, E) :=
C>® (M, E)*.

2) We define generalized sections on a smooth vector bundle by C~*°(M, E) =
Dist(M, E* @ Dyr), where D)y is the density bundle.

We don’t have a natural injection from C2°(M, E) to C°(M, E)* but we do have
a natural injection i : C°(M, E) — C~>°(M, E) as follows: Let u € C*(M, E* ®
Dyr) and f € CX(M,E). Note that f @ p € CX*(M,E* ® E ® Dy) (that is,
f @ u(m) = f(m)® u(m)). Note that we have a natural map ¢ : C°(M,E* @ E®
Dy) — C°(M, Dy) and a natural map [ : C2°(M, Dy) — C by integrating
on M according to the measure defined by the section of the density bundle. Hence
(i(f),m) = [, a(f ® ). Therefore, the definition of generalized sections indeed

generalizes smooth sections.
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Exercise. Let M, N be either smooth or an F-analytic manifolds and let X, Y be
l-spaces. Show that:

1) C*(M) " = C—>=(M).
2) C(M)@C(N) = C*(M)x C(N) and CZ(X)RCE(Y) = C°(X) x C(Y)

3) Find an example such that C°(X)* @ CX(Y)* 2 C(X x Y)*.The same for
(smooth/analytic) manifolds (Hint: consider X =Y = Z.)

4) Let Ej 2 be complex vector bundles over M 5, then C°(M; x My, By K Es) =
Cgo(Mlv El) ®C Ogo(MQa EQ)

Definition. Let X be an l-space and F a sheaf over X. Define F.(X) to be
the space of compactly supported global sections of F, that is, s € F(X) such that
s|ge = 0 outside some compact K. Define C°(X, F) := F(X).

Theorem. Leti: Z — X be l-spaces. Then:
1) Dist(X,F)|z ~ Dist(Z,F|z) = i*(F).

2) We have:

0 —» Dist(Z, F|z) — Dist(X,F) —s Dist(U, Fl|y) — 0.

We now want to prove the following important theorem:

Theorem. Let N C M a closed (real) submanifold and E a bundle over M. Then
there is a canonical filtration F; C Distn(M, E) (supported on N ) such that:

i) F; is locally exhaustive, i.e, |J F; is locally Distn (M, E).

ii) F;/Fi_y ~ Dist(N, E|y ® Sym‘(CNM)).

In order to prove the theorem, we would like to define the notion of “vanishing of
kth derivative of a smooth section f € C°(M, E)”. The only problem is that the
notion of kth derivative depend on the chart defined on M so it is not well defined.
Fortunately, the notion of “vanishing kth derivative” is well defined as the following

exercise shows:

Exercise. Let f € C™(R",C) with £ (0) = 0 for every |i| < k, and ¢ : R" — R"
a diffeomorphism such that ¢(0) = 0. Furthermorelet g € C°°(R™,C*) be a smooth

function, and set f(x) = f o 1(x)g(x).
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(a) Show that:
oF 2 %
(5007) © = (s o) 090

(b) Part (a) might not be true if f()(0) # 0 for some |i| < k.

As a consequence of this exercise, given any f € C°(M, E) such that f vanishes
with k& — 1 derivatives, we can define D¥f : T,M x .. T,M — E, by

8k
061,08k,

where ¢; is a local chart and&; ; = (p; o 71)/ (0) is some tangent vector. If we choose

DA (61 i) = ( (ro4h) 0)

a different chart ¢; we get that

DEF(Er g0 is) = (aikuoso-l)) (0) = (qul 0@)) o)
. 1,59+ sJ 8&1,]’---851@,3' J 8§1J~...8§k,j v

where ¢ := @; o cp;l. By the discussion above, we get that

(qu DEE
061508y ) P -

ak
(8(D<p)§1,j---8(D<ﬂ)§k,j

(Fopr)) ©

But

Dop(1,5) = Dagp - (piom) (0) = (p o piom)'(0) = €14
So DEf(& 4, &kj) = DEF(&1 4, &) and the definition is well defined. We can
now proof the theorem:

Proof. (of Theorem) Note that we can identify D¥f € Sym*(T; M) ® E,. Let
N C M be a submanifold. Define:

Fi(C*(M,E)) = {f € C:*(M,E)|Vz € N, f vanishes with i — 1 derivatives}

Recall that for locally, M|y ~ R™ and N|yny ~ RF, and we showed that Fy, ' (V) /Fiy, (V) =
C*(W, Sym*(W+)) using the map f — DY f. Hence by applying a small gener-
alization we get:

Fi/Fit =~ C(N, E|x ®@c Sym'(CN)).
This gives a canonical filtration F; C Disty (M, E) such that
Fi/Fiy ~ (Fi/Fi ') ~ C2(N, E|xn@cSym' (CNY))* = Dist(N, E|y@cSym' (CN)).

O
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Corollary. We have that Gr;(C~(M,E)y) = C~°(N, E|y®@D},|n@Sym’(N¥))®
Dp).

Proof. We have that:
GTi(C_OO(M, E)N) = GTi(DiStN(M, E*® DM))

~ Dist(N, E*|n®Dy|n®@Sym (CNM)) = C~(N, E|n@D%; | n@Sym* (NM )@ Dy).

O

8.1. Operations on generalized functions. At this subsection we assume X,Y
are either [-spaces, analytic F-manifolds (with or without complex bundles over

them), or smooth manifolds.

Definition. Let ¢ : X — Y be a map. We can define Pullback of the space of
functions by ¢* : C°(Y) — C°(X) by ¢*(f) = fop. It is easy to see that if ¢ is
proper then ¢* : C°(Y) — C2°(X). This give rise to a definition of Push forward
of distributions ¢, : Dist(X) — Dist(Y') by ©.(§)(f) = &(e*(f)) = &(f o v).

Note that if ¢ is not proper then we have ¢, : Dist(X)prop — Dist(Y) where
Dist(X)prop = {€ € Dist(X)| ¢|supp(e) is proper}. We would like to define it by
0&(f) = &(f o p). But f o is not compactly supported. Therefore we choose
a cutoff function p such that plsppe) = 1 and plyec = 0 where U is a small
neighborhood of supp(§) such that ¢ is proper (This is a hard task to find such
a function). Hence we can define ¢.&(f) := &(p- (f o )). Note that supp(p- (f o
) C supp(p) N~ (supp(f)) C @l (supPf). Since @lsupp, is proper, and f
is compactly supported, this is well defined. The definition clearly doesn’t depend

on the choice of p.

Recall that for vector spaces we had Dens(V') ~ haary. Hence we identify/define
the space of smooth measures p2°(X) as a the space of smooth sections of the
density bundle C° (X, Dx). Note that we can define ¢, : C°(X, Dx) — Dist(X)

by . (u)(f) = [ fdp.

Exercise. ¢, (Disteomp(X)) C Disteomp(Y).
Proposition. If ¢ : X — Y is a submersion, then:
1) pulpe (X)) € p(Y).

2) In addition, if ¢ = f-|wx| and p.(f - |wx]|) = g |wy|, where |wx|, |wy| are non-
lwx| lwx| = p
¢ 1)

[p*wy | lo*wy|

vanishing densities on X,Y then g(y) = fsfl(y) f where
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satisfy that |wx| ~ |;°:5l|

(Dwfl(y))w ® (DY)@(I)'

® |wy| according to the natural isomorphism (Dx ), ~

Proof. 1) Case 1: X = F™)Y = F™ and ¢ : F* — F™ is the natural projection
(X1, ey ) = X1, ..o, Ty Recall that haarx ~ haary ® haarxy or equivalently
Dx|(zy,....on) = Dyl(zy,....20) @ Dx)vl(zT,.... 77, Where (T1,...,7,) = € X/Y. Let
¢ € C*(X,Dx) and note that ¢ = f-dux where f € C(X) and px is the
canonical Haar measure (taking the value 1 on the unit ball), so we can write

px = py @ px,y- By definition, for any g € C2°(Y') we have:
(p«(8),9) = (¢, g0 p) = / [ (gop)dux = / [ (go@)duy ® px)y.
X y JXx/Y

Since g o (1, ..., Tn) = g(T1, ..., Ty ) depends only on Y so we have

<sﬁ*(¢)7g>—/y< X/yf-dux/y> 'gduyz/yf-gduy

where f € C°(Y). Hence ¢, () is a smooth function.

General case: ¢ : X — Y is a submersion. Write ¥ = UV} and then X =
UU; such that (U;;) € V;. For any i,j such that o(U;) € V; we can choose
isomorphisms 7; : U; ~ F™ and 1; : V; ~ F™ such that 1; o ¢ o 7; " is the
natural projection F" — F™. Hence (1)j 0o, ") (uX(F") C (u(F™) and
0. (C°(Us, Dy,) € C°(Vj, Dy, ). By partition of unity, we can write ¢ = > fidpu;
where f;dp; € C°(U;, Dy,) (this is a finite sum as ¢ is compactly supported).
Finally, observe that:

eu(9) = @*(Z fidpi) = Z ou(fidps) = Zgidﬂi-

Each g;du; is a smooth distribution, so also the sum > g;du;.
2) Since is a submersion then for any p(x) =y € Y ¢~ !(y) is a submanifold of X
and we have the following exact sequence:
0— Top ' (y) — Tu(X) — Ty (Y) — 0.
Therefore T, (X) = T~ (y) ® Typ(2)(Y) and hence also
0— Tj,)(Y) — T (X) — Ty ' (y) — 0.

This give rise to the following equality: (Dx ). = (Dy-1(y))e @ (Dy)p) by (¥ @
7) — ¢. Precisely, we choose basis v, ..., v, of Tpp~1(y) and a complement

basis vy 41, ..., Un such that do(viy1, ..., vn) is a basis of T,y (Y) . We now define
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d(U1 Ao Avp) == (01 A coeo Avgy) - T(d (U1 A ... Avy). Tt can be checked that

the isomorphism doesn’t depend on the choice of the basis.

We first reduce the problem to a small neighborhood, write ¥ = UV} and then
X = UU; such that o(Uy;) € Vj. For any i, j such that o(U;) € V; we can choose
isomorphisms 7; : U; >~ F™ and v; : V; ~ F" such that ;0 p o 7-171 is the natural

projection.

We need to prove that ¢.(f lwx|)(h) = flwx]|(hog) =g |wy|(h) where g as in
the above formula. Construct partition of unity f = > f;. Then it is enough to
prove the claim for f;|wx| as then:

ou(f lox)(B) = 0D filwx)(h) = Z/Ygihlwl

where g;(y) = fwl(y)ﬁUi fi-n= fwl(y) fi-n. As g = > g; we have that g(y) =
fw,l(y) f - n as required.

The case of projection ¢ : F™ — F™ was solved at a). Hence it is enough to
reduce to this case. Using the fact that for diffeomorphism, pushforward is inverse

to pullback, we get:

Piopu(filwx|) = Piopor, (171 (filwx ) = wjopor, (fior, M|(7, ) wx|) = gi |(¥; 1) wy |

Gi(z) = ot D) e
where gz(fE) - fTi°<P71°1/J;1($) fz °Ti ’(Lporfl)*wy

gi o 1/;]71. Hence . (fi |wx|) = gi |wy |- Also

’. Denote g; := g; o 1. So g; =

e~ 1(y)

Definition. By the proposition, the map ¢, : C°(X, Dx) — C(Y, Dy) gives
a pullback p* : C~°(Y) — C~>°(X).

(Ti_l)*WX

(por ) wy

wx
Prwy

(o) = o, = [

T, op~ iy

fio 7'1'_1
)

O

Exercise. Let ¢ : X — Y be a submersion. We defined a pullback ¢* :
C>®(Y) — C=(X) both by ©*(f) = f o ¢ and by first defining ¢* : C~°(Y) —
C'~°°(X) via the definition for compactly supported smooth measures, and then by
restricting to C°°(Y). Show that the two definitions coincide.

We can also generalize the push and pull of functions and distribution to bundles:
Definition. 1) Let ¢ : X — Y and 7 : E — Y a bundle. Define ¢*(E) :=
{(z,e) € X x E|p(z) = 7(e)} as a bundle over X with the natural projection to X.

2) We can now define pullback of sections ¢* : C°(Y, E) — C*°(X, ¢*(E)) and
pushforward of distributions ¢, : Dist(X, ©*(E))prop — Dist(Y, E).
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3) Let ¢ : X — Y. Define ¢'(E) := ¢*(F) ® ¢*(D3) ® Dx.

Proposition. Let p : X — Y be a submersion. Then . (C(X,¢*(F)® Dx)) C
C=(Y,E ® Dy). In particular, This implies that ¢. (C°(X, ¢'(E))) € C*(Y,E).

Proof. As in the proof of the last proposition, we may reduce to the case where
¢ : X — Y is the natural projection, X = F*, Y = '™, E ~ ™ x F* is trivial
and as a consequence ¢*(E) = F™ x F*. We may do the reduction since the notion
of “smoothness” of a distribution is local. Let ¢ = fdu € C* (X, ¢*(E) ® Dx).
Then we have for any g € C*(Y, E),

(0+(0), 9) = (8, g00) =/Xf-(gocp)dux =/Y< f'dNX/Y> gdpy =/Yf-gduy = (fdpy,g)

X/Y

50 @« (¢) is smooth. O

9. FOURIER TRANSFORM

Definition. Let G be a locally compact Hausdorff abelian group. Define its Pon-
tryagin dual by,

GY ={x:G = Uy(C) = S" CC|x(g192) = x(91)x(g2), X is cts}

The topology on GV is the compact open topology, i.e. a sub-basis for the topology
is comprised of sets M(K,V) = {x € GV : x(K) C V} where K C G is compact
and V C S! is open.

Theorem. 1) Let G be a locally compact, Hausdorff abelian group, then GV is a

locally compact Hausdorff abelian group.

2) Let G be a locally compact, Hausdorff abelian group. Show that if G is compact
then GV is discrete, and that if G is discrete then GV is compact.

Proof. At the tutorial session. O

Theorem. For a locally compact abelian group G, we have that that the natural
map ¢ : G — GV defined by g — g4, where ©4(x) = x(9), is an isomorphism
GV ~(@.

Proposition. Let G be a locally compact, Hausdorff abelian group, and H < G a
closed subgroup. Then:

1) Pontryagin duality is a contravariant endofunctor in the category of locally com-

pact abelian groups.
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2) Show that HY ~ GV /H* where H- = {x € GV : x(h) = 1 Vh € H}, and that if
H and G are vector spaces then this is a homeomorphism.
Proof. At the tutorial session. O
Example. 1) For any finite abelian group G' we have that G ~ G.
2) The dual of U;(C) = St is Z.
3) For G =R ~R.

Exercise. Let V be a topological vector space over a local field F. Then V* @p
FV~VV,

Definition. Let G be a locally compact Hausdorff abelian group. The map F :
pe(G) — C(GY) defined by F(u)(x) = [ xdu is called Fourier trans form.

Exercise. 1) F(u) is continuous.

2) Let G be a locally compact abelian group. Show that for n € u°(G) and g € G:

(a) F(shg(n)(x) = x(9)F(n)(x) for all x € GV.
(b) F(xn) = shy-1(F(n)) for all y € G".

Definition. Let X7, X be locally compact T.V.S and let p1 € p2®(X1),u2 €
1 (X2). We can define the tensor product of such measures p; X ps € p2° (X5 x
Xo).In addition, If X; = X5 = G, then we can also define convolution of measures

by g1 * p2 := my(p1 X pg) where m : G x G — G.

Fact. F(ax ) = F(a)- F(B).

Definition. Let V be a f.d vector space over alocal field F'. Define Schwartz functions
on V by:

1)S(V) = C°(V), i.e. locally constant functions on V', in case F' is non-archimedean.

2)S(V) ={f e C=(V)|Vi e N*,p e F[V], sup|d'f - p(x)| < oo}, if F is archimedean.

In other words it is the space of rapidly decreasing smooth functions on V.

Exercise. 1) Let F be a local field, show that F(S(V; Haar(V)) € S(VV). In
particular, for the subspace pu° (V) C S(V; Haar(V) we have that F(u2*(V)) C
S(VY).

2) Give u2°(V) the subspace topology of S(V;Haar(V) and S(VV) the natural
Fréchet topology. Show that F : u®(V) — S(VV) is continuous with respect to
these topologies.
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3) Show that (V) is dense in S(V; Haar(V') and that S(V;; Haar(V') is complete
and deduce that F : S(V; Haar(V)) — S(VV) is continuous.

Definition. 1) Let S(V') be the space of Schwartz functions on V. Then £ € S*(V)
is called thetempered distribution and & € G(V) := S*(V, Haar(V)) is called a

tempered generalized function.

2) Finally, we now can define the Fourier transform on tempered distributions via
duality:
F:8(VY) = G(V) := §*(V, Haar(V)).
Choosing V := V'V we get F : S*(V) = G(VV).
Theorem. The definition of Fourier transform of distributions is consistent with

the definition for functions. In other words Jf’-:|5(v;Haar(V) =F.

Proof. Let f(z)-dx € S(V;Haar(V)) and g(x) - dx € S(VV; Haar(V"). Then by
definition,

(F(f (@) - da), g(x) - dx) = (f () - dw, F(g(x)dx)) /f dx)(x)dx

where F(g(x) - dx)(x) := [ x(2)g(x)dx. Therefore we have:

| 10Faa@i = [ @ [ x@anad = [ ( / x(x)f(x)dx) g0y
= | F00) a0y = (F(fa) - de).gx) - ).

O

In the following argument we would like to present the Fourier transform as a
unitary operator. For this we will first need to define a pairing between Haar(V)
and Haar(VY). Given o € Haar(V) and 8 € Haar(V) we can define such a
paring as follows. We choose f € C2°(VY) such that f(0) = 1 and then define

<a7ﬁ> = <]:(a)7fﬁ>

Exercise. 1) This definition is well defined. That is, given some other g € C°(V'")
such that ¢(0) = 1, show that (F(a),(f —g)-8) =0.

2) Show that hyv ~can hi .

Definition. We can now define a map F,, : S*(V,hy") — S*(VV, h®(l ")y by
using the pairing hyv ~cq, hi-and identifying S*(V,h{"), S*(VV, h®(1 ")) with
S*(V)Y®hD™™ and S*(VV, hyv) @ (hyv)®" respectively. The identification between
S*(V,hg™) and S*(V) @ hU is as follows. Given ¢ ® B € S*(V)®@h$lU and f-a €
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S(V,hg™) we set £ ® B — £B where £8(fa) = £(f(B,a)). Under this notation, we
have that Fy : S*(V) — S*(V'Y, hyv) is the Fourier transform.

Proposition. We have that Fy o Fy = flip where flip(&)(f(z)u) = E(f(—z)p).

Proof. Note that span{d,} is a dense subspace of S*(V) in the weak topology.
Hence it is enough to show that F7 o Fy(dq) = d_,. Note that Fo(do)(f3) =

(60, Fo(fB)) = [i,v fdB. Hence Fo(do) = 1.

Note that Fy : S*(VVY, hyv) — S*(V) is defined by identifying : S*(VV, hyv) with
S*(VV) ® hy. Under this identification, 1 := (1 - u1) ® powhere 1 -y € S*(VV),
p2 € hy and (u1,p2) = 1. Now given f € S(V), Fi((1- p1) @ pa)(f) = F(1 -
p1)(fuz) = f(0) so Fi o Fo(do) = do-

Notice that Fo(Shqe(do)) = x(a) (as a function of x) and Fi(x(a)). By continuity
of Fo and F; this implies that F; o Fy = flip.(Need to finish) O

Definition. Let V' be a vector space over F' and let x : F* — K* be a group
homomorphism. We can define

x(V)i={g: V" — K*|p(af) = x(@)e(f)}.

Example. If x = Square : F* — F* by x(a) = a?, then Square(V) := {¢ :
V* — Klp(af) = o?p(f)}. Note that Square(V) ~een V @ V if V is one
dimensional by v ® w — @, - ©,,. Note that given ¢ € V* we have ¢, - @, (1) =

Y(v) - (w) and @y - pu(ah) = ayp(v) - ap(w) = 024%71; “pw ().

Definition. Let V be a one dimensional vector space over R.
1) A positive structure on V is a non trivial subset P C V such that R>o- P = P.

2) If V' has a positive structure, we can define
Ve= V[T ={p: V" — R¥p(Bf) = B - ¢(f)}-

Exercise. 1) Let V/R be a 1-dimensional vector space with a positive structure.
Show that:

(a) V ~can [V
(b) Veth ~ .. V@ VP where a, 8 € Q*.

2) Deduce that Ay ® he.
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Definition. We now can finally define
Fo: S*(Vihy) — S*(VY, hi™)
for « € Q. In particular, choosing o = 1/2 we have:

Frg: S5 (V,hi/%) — 55 (VY hi/d)
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